Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\Leftrightarrow\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2=\frac{1}{2}+\frac{2xy}{xy+x+y+1}\)
\(\Leftrightarrow\left(\frac{x^2+x+y^2+y}{xy+x+y+1}\right)^2=\frac{1}{2}+\frac{2xy}{4xy}\)
\(\Leftrightarrow\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)}{4xy}\right)^2=1\)
\(\Leftrightarrow\left(\frac{\left(3xy-1\right)^2+xy-1}{4xy}\right)^2=1\)
Đặt s=x+y;p=xy (s2\(\ge\)4p)
Suy ra: \(\left(\frac{\left(3p-1\right)^2+p-1}{4p}\right)^2=1\)
=>\(\frac{9p^2-5p}{4p}=1\)hoặc \(\frac{9p^2-5p}{4p}=-1\)
<=>p=1 hoặc p=1/9
Với p=1 thì: 3=s+1=>s=2 (thỏa dk)
=>nghiệm của hpt là nghiệm của pt: X2-2X+1=0
=>x=1
Vậy hpt có 1 nghiệm là: (1;1)
Với p=1/9=>s=-2/3 (thỏa dk)
Giải như trên òi kết luận
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
trừ 2 về đi bạn , cả 2 câu đều k khó đâu
a)x=144 , y=36
b)x=9 , y=1
cần lời giải thì nói mình