Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
Lời giải:
a) Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos 2xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\frac{\sin 2x}{2}\end{matrix}\right.\)
\(\Rightarrow \int x\cos 2xdx=\frac{x\sin 2x}{2}-\int \frac{\sin 2x}{2}dx=\frac{x\sin 2x}{2}+\frac{\cos 2x}{4}\)
\(\Rightarrow \int ^{\frac{\pi}{2}}_{0}x\cos 2xdx=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\left ( \frac{x\sin 2x}{2}+\frac{\cos 2x}{4} \right )=\frac{-1}{2}\)
b) Đặt \(\left\{\begin{matrix} u=x\\ dv=e^{-2x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\frac{-e^{-2x}}{2}\end{matrix}\right.\)
\(\Rightarrow \int xe^{-2x}dx=\frac{-xe^{-2x}}{2}+\int \frac{e^{-2x}}{2}dx=\frac{-xe^{-2x}}{2}-\frac{e^{-2x}}{4}\)
\(\Rightarrow \int ^{\ln 2}_{0}xe^{-2x}dx=\left.\begin{matrix} \ln 2\\ 0\end{matrix}\right|\left ( \frac{-xe^{-2x}}{2}-\frac{e^{2x}}{4} \right )=\frac{3}{16}-\frac{\ln 2}{8}\)
c)
\(\int ^{1}_{0}\ln (2x+1)dx=\frac{1}{2}\int ^{1}_{0}\ln (2x+1)d(2x+1)=\frac{1}{2}\int ^{3}_{1}\ln tdt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t\)
Do đó \(\frac{1}{2}\int ^{3}_{1}\ln tdt=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\left(\frac{t\ln t-t}{2}\right)=\frac{3\ln 3}{2}-1\)
d)
Ta có \(\int ^{3}_{2}(\ln (x-1)-\ln (x+1))dx=\int ^{3}_{2}\ln (x-1)d(x-1)-\int ^{3}_{2}\ln (x+1)d(x+1)\)
\(=\int ^{2}_{1}\ln tdt-\int ^{4}_{3}\ln tdt\)
Theo phần c, ta đã chỉ ra được \(\int \ln tdt=t\ln t-t\), do đó:
\(\int ^{2}_{1}\ln tdt-\int ^{4}_{3}\ln tdt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|(t\ln t-t)-\left.\begin{matrix} 4\\ 3\end{matrix}\right|(t\ln t-t)=\ln \left(\frac{27}{64}\right)\)
e)
Xét \(\int (x+1-\frac{1}{x})e^{x+\frac{1}{x}}dx=\int e^{x+\frac{1}{x}}dx+\int \left (x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx\)
Đặt \(\left\{\begin{matrix} u=e^{x+\frac{1}{x}}\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\left(1-\frac{1}{x^2}\right)e^{x+\frac{1}{x}}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow \int e^{x+\frac{1}{x}}dx=xe^{x+\frac{1}{x}}-\int \left(x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx\)
Do đó \(\int \left(x+1-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx=xe^{x+\frac{1}{x}}\)
\(\int ^{2}_{\frac{1}{2}}\left(x+1-\frac{x}{x}\right)e^{x+\frac{1}{x}}dx=\left.\begin{matrix} 2\\ \frac{1}{2}\end{matrix}\right|xe^{x+\frac{1}{x}}=\frac{3e^{\frac{5}{2}}}{2}\)
Câu 1:
Phương trình hoành độ giao điểm :
\(mx-\frac{x-2}{x-1}=0\Leftrightarrow mx^2-(m+1)x+2=0\)
Để 2 ĐTHS cắt nhau tại hai điểm phân biệt thì đương nhiên pt trên phải có hai nghiệm phân biệt
Do đó: \(\left\{\begin{matrix} m\neq 0\\ \Delta=(m+1)^2-8m>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m^2-6m+1>0\end{matrix}\right.\) (1)
Áp dụng hệ thức viete: \(\left\{\begin{matrix} x_1+x_2=\frac{m+1}{m}\\ x_1x_2=\frac{2}{m}\end{matrix}\right.\)
Dễ thấy , đồ thị \(y=\frac{x-2}{x-1}\) có TCĐ \(x=1\) và TCN $y=1$
Khi đó, để 2 giao điểm thuộc hai nhánh của nó thì:
\(x_1>1;x_2<1 \Rightarrow (x_1-1)(x_2-1)<0\)
\(\Leftrightarrow \frac{2}{m}-\frac{m+1}{m}+1<0\Leftrightarrow \frac{1}{m}<0\Leftrightarrow m< 0\)(2)
Từ \((1),(2)\Rightarrow m< 0\)
Đáp án D
38) \(I=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{2\sin x-\cos x+1}=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{4\sin\frac{x}{2}\cos\frac{x}{2}+2\sin^2\frac{x}{2}}=\int\limits_{\pi/2}^{2\pi/3}\frac{dx}{\cos^2\frac{x}{2}(2\tan\frac{x}{2}+\tan^2\frac{x}{2})}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow dt=\frac{dx}{2\cos^2 \frac{x}{2}}\) và \(x=\frac{\pi}{2}\Rightarrow t=1,x=\frac{2\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_1^{\sqrt{3}} \frac{2dt}{2t+t^2}=\int\limits_1^{\sqrt{3}} (\frac{1}{t}-\frac{1}{t+2})=(\ln |t|-\ln|t+2|)\Big|_1^{\sqrt{3}}=\frac{3}{2}\ln 3-\ln(2+\sqrt{3})\)
39) \(I=\int\limits_{\pi/6}^{\pi/3} \frac{\tan xdx}{\cos^2 x(1-\tan x)}\)
Đặt \(t=\tan x\Rightarrow dt=\frac{dx}{\cos^2 x}\) và \(x=\frac{\pi}{6}\Rightarrow t=\frac{1}{\sqrt{3}},x=\frac{\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_{1/\sqrt{3}}^{\sqrt{3}}\frac{tdt}{1-t}==\int\limits_{1/\sqrt{3}}^{\sqrt{3}}(\frac{1}{1-t}-1)dt=(-\ln|1-t|-t)\Big|_{1/\sqrt{3}}^{\sqrt{3}}\)
có ai chơi tik tok ko mn vào ủng hộ kênh youtube kênh là mik châu xinh gái nha fan nhung thì vào đấy
nhung kia chi nhung xinh qua to cung la fan chi nhung cau la fan chi nhugng thi ket ban nhe
Câu 12:
Để hàm số $y$ đồng biến trên từng khoảng xác định thì:
\(y'=\frac{m+1}{(x+1)^2}> 0, \forall x\in (-\infty;-1)\cup (-1;+\infty)\)
\(\Leftrightarrow m> -1\)
Đáp án B.
Câu 13:
$y=x^3-3m^2x$
$y'=3x^2-3m^2$. Để $y$ đồng biến trên $\mathbb{R}$ thì $y'\geq 0, \forall x\in\mathbb{R}$
$\Leftrightarrow x^2\geq m^2, \forall x\in\mathbb{R}$
$\Leftrightarrow m^2\leq min (x^2)=0$. Điều này xảy ra khi $m=0$
Đáp án D.