Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
38) \(I=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{2\sin x-\cos x+1}=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{4\sin\frac{x}{2}\cos\frac{x}{2}+2\sin^2\frac{x}{2}}=\int\limits_{\pi/2}^{2\pi/3}\frac{dx}{\cos^2\frac{x}{2}(2\tan\frac{x}{2}+\tan^2\frac{x}{2})}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow dt=\frac{dx}{2\cos^2 \frac{x}{2}}\) và \(x=\frac{\pi}{2}\Rightarrow t=1,x=\frac{2\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_1^{\sqrt{3}} \frac{2dt}{2t+t^2}=\int\limits_1^{\sqrt{3}} (\frac{1}{t}-\frac{1}{t+2})=(\ln |t|-\ln|t+2|)\Big|_1^{\sqrt{3}}=\frac{3}{2}\ln 3-\ln(2+\sqrt{3})\)
39) \(I=\int\limits_{\pi/6}^{\pi/3} \frac{\tan xdx}{\cos^2 x(1-\tan x)}\)
Đặt \(t=\tan x\Rightarrow dt=\frac{dx}{\cos^2 x}\) và \(x=\frac{\pi}{6}\Rightarrow t=\frac{1}{\sqrt{3}},x=\frac{\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_{1/\sqrt{3}}^{\sqrt{3}}\frac{tdt}{1-t}==\int\limits_{1/\sqrt{3}}^{\sqrt{3}}(\frac{1}{1-t}-1)dt=(-\ln|1-t|-t)\Big|_{1/\sqrt{3}}^{\sqrt{3}}\)
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
j zợ xấu như ma còn bày đặt. Trên này lak hok chứ ko phải chụp ảnh tự sướng như mấy con điên đâu -_-
Câu 47:
Ta có \(\log_3\frac{1-xy}{x+2y}=3xy+x+2y-4\)
\(\Leftrightarrow \log_3(1-xy)-\log_3(x+2y)=3(xy-1)-1+(x+2y)\)
\(\Leftrightarrow \log_3(3-3xy)+(3-3xy)=\log_3(x+2y)+(x+2y)\)
Xét hàm \(f(x)=\log_3x+x\Rightarrow f'(x)=\frac{1}{x\ln 3}+1>0\) với \(x>0\)
Do đó , hàm là hàm đồng biến trên TXĐ
\(\Rightarrow f(3-3xy)=f(x+2y)\Leftrightarrow 3-3xy=x+2y\)
\(\Leftrightarrow y=\frac{3-x}{3x+2}\). Vì \(x,y>0\Rightarrow \frac{3-x}{3x+2}>0\Rightarrow 0< x< 3\)
Ta có \(P=x+\frac{3-x}{3x+2}\)
\(P'=\frac{9x^2+12x-7}{(3x+2)^2}=0\Leftrightarrow x=\frac{-2+\sqrt{11}}{3}\) (chọn) hoặc \(x=\frac{-2-\sqrt{11}}{3}\) (loại vì $x>0$)
Lập bảng biến thiên ta suy ra \(P_{\min}=P(\frac{-2+\sqrt{11}}{3})=\frac{-3+2\sqrt{11}}{3}\)
Đáp án D
Bài 48:
PT hoành độ giao điểm:
\(x^3-3x^2+x+2-(mx-m+1)=0\)
\(\Leftrightarrow (x-1)(x^2-2x-1-m)=0\)
Để hai đths cắt nhau tại ba điểm phân biệt thì pt trên phải có ba nghiệm phân biệt, tức là \(x^2-2x-(m+1)=0\) có hai nghiệm phân biệt khác 1
\(\Rightarrow \left\{\begin{matrix} 1-2-(m+1)\neq 0\\ \Delta'=1+(m+1)>0\end{matrix}\right.\Rightarrow m> -2\)
Gọi \(x_1,x_2\) là hai nghiệm của pt trên thì \(x_1,x_2=\frac{-b'\pm \sqrt{\Delta'}}{a}=1\pm \sqrt{m+2}\)
Do đề bài không yêu cầu thứ tự các điểm, nên ta đặt ba giao điểm của 2 đths là:
\(A(1;1)\)
\(B(x_1; mx_1-m+1)\)
\(C(x_2;mx_2-m+1)\)
(miễn sao thỏa mãn tồn tại 2 đoạn thẳng tạo bởi 2 trong 3 điểm trên có độ dài bằng nhau)
Ta có:
\(AB=\sqrt{(x_1-1)^2+(mx_1-m)^2}=\sqrt{(x_1-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)
\(AC=\sqrt{(x_2-1)^2+(mx_2-m)^2}=\sqrt{(x_2-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)
\(BC=.....\)
Nhìn trên thì dễ thấy \(AB=AC\) luôn bằng nhau với mọi \(m>-2\), tức là thỏa mãn đkđb
Vậy \(m>-2 \) hay \(m\in (-2;+\infty)\)
Đáp án D
Câu 1:
Phương trình hoành độ giao điểm :
\(mx-\frac{x-2}{x-1}=0\Leftrightarrow mx^2-(m+1)x+2=0\)
Để 2 ĐTHS cắt nhau tại hai điểm phân biệt thì đương nhiên pt trên phải có hai nghiệm phân biệt
Do đó: \(\left\{\begin{matrix} m\neq 0\\ \Delta=(m+1)^2-8m>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m^2-6m+1>0\end{matrix}\right.\) (1)
Áp dụng hệ thức viete: \(\left\{\begin{matrix} x_1+x_2=\frac{m+1}{m}\\ x_1x_2=\frac{2}{m}\end{matrix}\right.\)
Dễ thấy , đồ thị \(y=\frac{x-2}{x-1}\) có TCĐ \(x=1\) và TCN $y=1$
Khi đó, để 2 giao điểm thuộc hai nhánh của nó thì:
\(x_1>1;x_2<1 \Rightarrow (x_1-1)(x_2-1)<0\)
\(\Leftrightarrow \frac{2}{m}-\frac{m+1}{m}+1<0\Leftrightarrow \frac{1}{m}<0\Leftrightarrow m< 0\)(2)
Từ \((1),(2)\Rightarrow m< 0\)
Đáp án D
nhung kia chi nhung xinh qua to cung la fan chi nhung cau la fan chi nhugng thi ket ban nhe
thích thích tớ là fan thị nhung