Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\frac{1}{x}+\frac{1}{y}=\frac{3}{8}\\
\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\
\frac{1}{z}+\frac{1}{x}=\frac{5}{6}\end{matrix}\right.\Rightarrow 2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{8}+\frac{3}{4}+\frac{5}{6}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{47}{48}\)
\(\Rightarrow \left\{\begin{matrix} \frac{1}{z}=\frac{47}{48}-\frac{3}{8}\\ \frac{1}{x}=\frac{47}{48}-\frac{3}{4}\\ \frac{1}{y}=\frac{47}{48}-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{48}{29}\\ y=\frac{48}{11}\\ z=\frac{48}{7}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y+z=2\\8y-4z=1\\x+y+2z=4\end{matrix}\right.\)
=>y=9/20; z=13/20; x=4-y-2z=9/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}z=23-x-y\\z=31-y-t\\z=27-t-x\\x+y+t=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-y+23=-y-t+31\\-y-t-31=-x-t+27\\x+y+t=33\\z=23-x-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+t=8\\x-y=58\\x+y+t=33\\z=23-x-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x+8\\y=x-58\\x-58+x+8+x=33\\z=23-x-y\end{matrix}\right.\)
=>x=83/3; t=107/3; y=-91/3; z=23-83/3+91/3=77/3
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)
gọi HPT trên là (1)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{x+y}{xy}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
Đặt x+y=a;xy=b(b#0).HPT trở thành:
\(\left\{{}\begin{matrix}a+\dfrac{a}{b}=\dfrac{9}{2}\left(!\right)\\b+\dfrac{1}{b}=\dfrac{5}{2}\left(!!\right)\end{matrix}\right.\)
Giải PT (!!) ta được \(b_1=2;b=\dfrac{1}{2}\)
TH1: Với b=2 thay vào (!)=>a=3
=> x+y=3 và xy=2 => x=2;y=1.
TH2: Với b=1/2 thay vào (!)=> a=3/2
=> x+y=3/2 và xy=1/2 => x=1 và y=1/2.
Vậy \(\left(x;y\right)=\left\{\left(2;1\right);\left(1;\dfrac{1}{2}\right)\right\}\)
b)**Phương trình có một nghiệm duy nhất
↔ 2 ≠ \(\dfrac{-1}{m}\)
↔ 2m≠ -1
↔m ≠ \(\dfrac{-1}{2}\)
***Phương trình vô nghiệm
↔ 2= \(\dfrac{-1}{m}\) ≠ \(\dfrac{1}{5}\)
↔\(\left\{{}\begin{matrix}2=\dfrac{-1}{m}\\\dfrac{-1}{m}\ne\dfrac{1}{5}\end{matrix}\right.\)
↔\(\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(nhận\right)\\m\ne-5\end{matrix}\right.\)
Vậy.............