Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt(1)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x^2+\left(6+y^2\right)x+2y^2=0\left(1'\right)\end{array}\right.\)
*)x=0.Thay vào pt(2) ta đc:y\(^2\)=-3(VN)
*)(1')\(\Leftrightarrow\left(x+2\right)\left(y^2+3x\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\y^2=-3x\end{array}\right.\)
TH1:x=-2\(\Rightarrow y^2\)=-5(VN)
TH2:y\(^2\)=-3x.(x\(\le0\)).Thay vào pt(2) ta đc:\(^2\)x\(^2\)
\(\Rightarrow\)x=3(L) hoặc x=1(L)
Vậy hệ pt vô nghiệm
a) Giá trị của biểu thức A tại x=-1 và y=-1 là:
A=5x3y2=5.(-1)3.(-1)2=5.(-1).1=-5
b) Giá trị của biểu thức B tại x=-3 và y=-1 là:
B=5xy4=5.(-3).(-1)4=-15
c) Giá trị của biểu thức C tại x=5 và y=-2 là:
\(C=\frac{4}{5}xy^3=\frac{4}{5}.5.\left(-2\right)^3=4.\left(-8\right)=-32\)
d) Giá trị của biểu thức D tại x=2 và y=\(\frac{1}{3}\) là:
\(D=\frac{3}{4}x^2y^3=\frac{3}{4}.2^2.\left(\frac{1}{3}\right)^3=3.\frac{1}{27}=\frac{1}{9}\)
e) Giá trị của biểu thức E tại x=\(\frac{1}{2}\) và y=5 là:
\(E=\frac{2}{5}x^2y=\frac{2}{5}.\left(\frac{1}{2}\right)^2.5=2.\frac{1}{4}=\frac{1}{2}\)
1)Thấy: x=0;y=0 không phải là nghiệm của hệ.
\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)
Trừ vế theo vế hai phương trình,đc:
\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)
\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:
\(26x^4-426x^2-1728=0\)
\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé
a: \(A=77^2+77\cdot22+77=7700\)
b: \(B=2\cdot\left(1.007+0.006\right)+2\left(-0.006-1.007\right)\)
\(=0\)
c: \(C=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2=\left(3-1\right)\cdot\left(3-2\right)^2=2\)
d: \(D=\left(-5\right)^2\cdot2-2+\left(-5\right)\cdot2^2+5\)
\(=25\cdot2-2-5\cdot4+5\)
=50-2-20+5
=55-22=33
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$