Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
ĐKXĐ : \(\left\{{}\begin{matrix}x+2\ge0\\2x-y\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge-2\\2x\ne y\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}-\frac{3}{y-2x}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}+\frac{3}{2x-y}=5\end{matrix}\right.\)
- Đặt \(a=\sqrt{x+2},b=\frac{1}{2x-y}\) ( \(a\ge0,\frac{1}{b}\ne0\) ) ta được hệ :
\(\left\{{}\begin{matrix}\frac{a}{3}+b=\frac{4}{3}\\2a+3b=5\end{matrix}\right.\)
( Đoạn này bấm máy cho nhanh nha )
=> \(\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) ( TM )
- Thay lại \(a=\sqrt{x+2},b=\frac{1}{2x-y}\) ta được :
\(\left\{{}\begin{matrix}\sqrt{x+2}=1\\\frac{1}{2x-y}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+2=1\\2x-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\2\left(-1\right)-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\) ( TM )
Vậy ...
\(\left\{{}\begin{matrix}\frac{3}{2x-y}-x=2-\frac{x\left(2x+y\right)+5}{2x+y}\\\frac{1}{2x-y}-\frac{1}{2x+y}=\frac{2}{15}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{3}{2x-y}-x=2-x-\frac{5}{2x+y}\\\frac{1}{2x-y}-\frac{1}{2x+y}=\frac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3}{2x-y}+\frac{5}{2x+y}=2\\\frac{1}{2x-y}-\frac{1}{2x+y}=\frac{2}{15}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{3}\\\frac{1}{2x+y}=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-y=3\\2x+y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)
đặt \(\frac{1}{x+y-1}=a\\ \frac{1}{2x-y+3}=b\)
ta có :
\(\left\{{}\begin{matrix}4a-5b=\frac{-5}{2}\\3a+b=\frac{-7}{5}\end{matrix}\right.\).......=>\(\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=\frac{1}{10}\end{matrix}\right.\)
suy ra \(\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
#Mai.T.Loan
ĐKXĐ: ..
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+y-1}=u\\\frac{1}{2x-y+3}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u-5v=-\frac{5}{2}\\3u+v=-\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=-\frac{1}{2}\\v=\frac{1}{10}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)