K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

ĐKXĐ: \(x\ne_-^+y;y\ne0\)

Từ PT thứ 2 ta có:\(\dfrac{96}{x-y}+\dfrac{72}{x-y}=\dfrac{24}{y}\)

<=>\(\dfrac{168}{x-y}=\dfrac{24}{y}\)

<=>\(\dfrac{168}{x-y}=\dfrac{168}{7y}\)

<=>x-y=7y

<=>x=8y

Thay x=8y vào PT thứ nhất:

\(\dfrac{96}{8y+y}+\dfrac{96}{8y-y}=14\)

<=>\(\dfrac{32}{3y}+\dfrac{96}{7y}=14\)

<=>32.7y+96.3y=294y2

<=>512y=294y2

<=>y=\(\dfrac{256}{147}\left(Doy\ne0\right)\)

=>x=8y=\(\dfrac{2048}{147}\)

Vậy...

1 tháng 12 2018

\(\left\{{}\begin{matrix}\dfrac{120}{x}=\dfrac{80}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\)(1)

Đặt \(a=\dfrac{1}{x}\);\(b=\dfrac{1}{y}\)

Vậy (1)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}120a=80b\\104b-1=96a\left(2\right)\end{matrix}\right.\)

Ta có \(120a=80b\Leftrightarrow b=\dfrac{3}{2}a\)

Thay \(b=\dfrac{3}{2}a\) vào (2)\(\Leftrightarrow104.\dfrac{3}{2}a-1=96a\Leftrightarrow156a-1=96a\Leftrightarrow60a=1\Leftrightarrow a=\dfrac{1}{60}\)

Vậy \(b=\dfrac{3}{2}.a=\dfrac{3}{2}.\dfrac{1}{60}=\dfrac{1}{40}\)

Vậy \(\left\{{}\begin{matrix}a=\dfrac{1}{60}\\b=\dfrac{1}{40}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=60\\y=40\end{matrix}\right.\)

Vậy (x;y)=(60;40)

NV
1 tháng 12 2018

\(\left\{{}\begin{matrix}\dfrac{3}{x}=\dfrac{2}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{96}{x}=\dfrac{64}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{104}{y}-1=\dfrac{64}{y}\)

\(\Rightarrow\dfrac{40}{y}=1\Rightarrow y=40\)

\(\Rightarrow x=\dfrac{3y}{2}=60\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(60;40\right)\)

=>3/x=2/y và 96/x+1=104/y

=>2x=3y và 96/x+1=104/y

=>x/3=y/2=k và 96/x+1=104/y

=>x=3k; y=2k

\(\dfrac{96}{x}+1=\dfrac{104}{y}\)

=>\(\dfrac{96}{3k}+1=\dfrac{104}{2k}\)

=>\(\dfrac{32}{k}+1=\dfrac{52}{k}\)

=>20/k=1

=>k=20

=>x=60; y=40

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....

Phương trình đâu bạn ?

4 tháng 2 2021

x=144, y=36y=36.

đăt:

\(a=\dfrac{x+1}{x+y}\)

\(b=\dfrac{x}{x-y}\)

8 tháng 2 2018

Sai đề k bạn ??

a: Đặt 1/x=a; 1/y=b

Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}3a+5b=-\dfrac{3}{2}\\5a-2b=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}\\\dfrac{1}{y}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

b: Đặt \(\dfrac{1}{x+y-1}=a;\dfrac{1}{x-y+1}=b\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a-4b=\dfrac{-14}{5}\\3a+2b=-\dfrac{13}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=-1\\x-y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

22 tháng 5 2018

bạn làm thế nào đẻ ghi được hệ vậy, chỉ mình vói sau đó minh se viet loi giai cho bạn

22 tháng 5 2018

trên chỗ trả lời có chỗ ghi hệ mà bạn (cạnh lệnh TEX ý) rồi bạn chọn lệnh thứ 4 từ phải qua trái rồi bạn chọn số pt trong hệ pt và điền vô thôi :v (mình không biết edit ảnh nên chắc bạn khó hiểu)

17 tháng 5 2017

a) ĐKXĐ: \(x\ne0,\text{ }y\ne0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\), hệ phương trình đã cho trở thành:

\(\left\{{}\begin{matrix}3a+5b=\dfrac{-3}{2}\\5a-2b=\dfrac{8}{3}\end{matrix}\right.\)

Giải hệ này bằng phương pháp cộng đại số hoặc thế tìm được 1 nghiệm duy nhất: \(\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{2}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}\\\dfrac{1}{y}=\dfrac{-1}{2}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)(thỏa mãn ĐKXĐ)

Vậy hệ đã cho có 1 nghiệm duy nhất \(\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\).