Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
Tất cả các hpt này đều giải bằng PP đặt ẩn phụ
a) \(\begin{cases}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}\)
Đặt \(x+y=a\) ; \(x-y=b\) ta được:
\(\begin{cases}2a+3b=4\\a+2b=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}2a+3b=4\\2a+4b=10\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}-b=-6\\2a+4b=10\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}b=6\\2a+4.6=10\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}a=-7\\b=6\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=6-7\\x-y=6-7\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x-7=-1\\6-y=-1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x=6\\y=-7\end{cases}\)
Lúc khác mình làm tiếp mấy câu kia
Tiếp nào!
b) \(\begin{cases}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{cases}\) Đặt \(\dfrac{1}{x}=a\) ; \(\dfrac{1}{y}=b\) ta được:
\(\begin{cases}3a-4b=2\\4a-5b=3\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}12a-16b=8\\12a-15b=9\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1b=-1\\12a-15b=9\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}b=1\\a=2\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}a=2\\b=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\dfrac{1}{a}=2\\\dfrac{1}{b}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}a=\dfrac{1}{2}\\b=1\end{cases}\)
c) Làm tương tự thay \(\dfrac{1}{2x-y}=a\) ; \(\dfrac{1}{x+y}=b\)
a)\(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-5x+3y-15=xy\\xy+5x-2y-10=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+3y-15=0\\5x+2y-10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=15\left(1\right)\\5x+2y=10\left(2\right)\end{matrix}\right.\)\(\left(1\right)-\left(2\right)=-y=-25\Leftrightarrow y=25\)
thay y = 25 vào \(\left(2\right)\), ta có: \(5x-2.25=10\Leftrightarrow x=12\)
Vậy hệ phương trình có nghiệm (x; y) là (12; 25)
a: Đặt 1/x=a; 1/y=b
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}3a+5b=-\dfrac{3}{2}\\5a-2b=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}\\\dfrac{1}{y}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
b: Đặt \(\dfrac{1}{x+y-1}=a;\dfrac{1}{x-y+1}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a-4b=\dfrac{-14}{5}\\3a+2b=-\dfrac{13}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=-1\\x-y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
bạn làm thế nào đẻ ghi được hệ vậy, chỉ mình vói sau đó minh se viet loi giai cho bạn
trên chỗ trả lời có chỗ ghi hệ mà bạn (cạnh lệnh TEX ý) rồi bạn chọn lệnh thứ 4 từ phải qua trái rồi bạn chọn số pt trong hệ pt và điền vô thôi :v (mình không biết edit ảnh nên chắc bạn khó hiểu)