Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)
* ĐK: \(x\ne+-y\)
\(\frac{108}{y+x}+\frac{63}{y-x}=7_{\left(1\right)}\)
\(\frac{81}{y+x}+\frac{84}{y-x}=7_{\left(2\right)}\)
Trừ theo vế với vế (1) cho (2) ta có: \(\frac{27}{y+x}-\frac{21}{y-x}=0\)<=> \(\frac{9}{y+x}=\frac{7}{y-x}\)<=> 9(y-x) = 7(y +x)
<=> y = 8x
Thay y = 8x vào PT (1) => \(\frac{108}{9x}+\frac{63}{7x}=7\)<=> \(\frac{12}{x}+\frac{9}{x}=7\) <=> 21/x = 7 => x = 3 => y =24
Vậy HPT cho có nghiệm (x; y) = (3; 24)
Đặt: \(\left\{{}\begin{matrix}\frac{1}{x+y}=a\\\frac{1}{x-y}=b\end{matrix}\right.\)
Hệ đã cho trở thành: \(\left\{{}\begin{matrix}108b+63a=7\\81b+84a=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{27}\\b=\frac{1}{21}\end{matrix}\right.\)
\(\Rightarrow\frac{1}{x+y}=\frac{1}{27}\Rightarrow x+y=27\)
Và: \(\frac{1}{x-y}=\frac{1}{21}\Rightarrow x-y=21\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)
Vậy ................
\(\left\{{}\begin{matrix}\frac{3x}{x+1}+\frac{2}{y+4}=4\\\frac{2x}{x+1}-\frac{5}{y+4}=9\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\frac{x}{x+1}\\b=\frac{1}{y+4}\end{matrix}\right.\)
Thay a và b vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3a+2b=4\\2a-5b=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6a+4b=8\\6a-15b=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19b=-19\\3a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\3a+2.\left(-1\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Ta có:
\(a=\frac{x}{x+1}=2\Leftrightarrow x=2\left(x+1\right)\)
<=> x=2x+2
<=> x=-2
\(b=\frac{1}{y+4}=-1\Leftrightarrow y+4=-1\Leftrightarrow y=-5\)
Vậy hệ phương trình có nghiệm \(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)