Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x^2+y^2+z^2=1 nên 0 <= x^2<=1, 0<=y^2<=1, 0<=z^2<=1 ( <= : nhỏ hơn hoặc bằng nha bn:))
suy ra -1<=x<=1: -1<=y<=1,-1<=z<=1 (*)
Xét x^2+y^2+z^2-(x^3+y^3+x^3)=1
x^2(1-x)+y^2(1-y)+z^2(1-z)=0 (**)
Có x^2 , y^2, z^2>=0 với mọi x,y,z
Lại có x<=1, y<=1, z<=1 nên 1-x>=0, 1-y>=0, 1-z>0 (***)
Từ (**) và (***) suy ra:
x^2(1-x)+y^2(1-y)+z^2(1-z)>=0 với mọi x, y, z
Nên từ (*) suy ra: x^2(1-x)=0
y^2(1-y)=0
z^2(1-z)=0
Suy ra có 3 trường hợp :x=0 hoặc x=1 ; y=0 hoặc y=1, z=0 hoặc z=1
Với x=1 suy ra y=z=0 nên P=0
Với y=1 suy ra x=z=0 nên P=0
Với z=1 suy ra y=x=0 nên P=0
Vậy trong mọi trường hợp P=0
TH y=0 \(\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\z=1\end{matrix}\right.\) nhanguyễn hoàng anh ghi nhầm y=1 rồi
Đề:\(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\). Đề nhớ ghi đủ nha
Áp dụng hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Leftrightarrow1-3xyz=1-xy-yz-zx\)
\(\Leftrightarrow3xyz=xy+yz+zx\)(1)
Lại có: \(1=x+y+z\)
\(\Rightarrow1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=1+2\left(xy+yz+zx\right)\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)(2)
Từ (1) và (2) ta suy ra: \(3xyz=0\)
\(\Leftrightarrow xyz=0\)
\(\Rightarrow\) x=0 hoặc y=0 hoặc z=0
*Xét x=0, ta có: \(\left\{{}\begin{matrix}y+z=1\left(3\right)\\y^2+z^2=1\\y^3+z^3=1\end{matrix}\right.\)
Từ \(\left(3\right)\Leftrightarrow y^2+z^2+2yz=1\)
\(\Leftrightarrow1+2xy=1\)
\(\Leftrightarrow2xy=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}z=1\\y=1\end{matrix}\right.\)
Tương tự, ta giải các TH kia cũng vậy:
\(y=0\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(z=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy nghiệm của phương trình trên là:
\(\left(x;y;z\right)=\left\{\left(1;0;0\right);\left(0;1;0\right);\left(0;0;1\right)\right\}\)