K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có:

\(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0=0\)

\(\Leftrightarrow (x^2+2x+1)+(y^2+2y+1)+(z^2+2z+1)=0\)

\(\Leftrightarrow (x+1)^2+(y+1)^2+(z+1)^2=0(*)\)

Ta thấy rằng \(\left\{\begin{matrix} (x+1)^2\geq 0\\ (y+1)^2\geq 0\\ (z+1)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó để $(*)$ xảy ra thì \((x+1)^2=(y+1)^2=(z+1)^2=0\)

\(\Leftrightarrow x=y=z=-1\)

Thử lại thấy thỏa mãn

Vậy \(x^{2017}+y^{2017}+z^{2017}=(-1)^{2017}.3=-3\)

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có:

\(2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x^2+2xy+y^2)\)

\(=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\)

Theo BĐT Bunhiacopxky:

\((x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow \frac{3}{2}(x^2+y^2)\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow 2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\geq \frac{5}{4}(x+y)^2\)

\(\Rightarrow \sqrt{2x^2+xy+2y^2}\geq \frac{\sqrt{5}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{2y^2+yz+2z^2}\geq \frac{\sqrt{5}}{2}(y+z)\)

\(\sqrt{2z^2+zx+2x^2}\geq \frac{\sqrt{5}}{2}(z+x)\)

Cộng theo vế các BĐT thu được:

\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\geq \sqrt{5}(x+y+z)=\sqrt{5}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết