Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+x-2y\ge0\)
\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)
\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )
\(\Leftrightarrow0\le y\le\frac{x}{2}\)
\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )
\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)
Vậy Mmax=9 <=> x=6, y =3
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
\(x^2-2xy+x-2y\le0\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)\le0\Leftrightarrow\left(x+1\right)\left(x-2y\right)\le0\)
Vì \(x\ge0\Rightarrow x+1\ge0\Rightarrow x-2y\le0\Rightarrow x\le2y\)
\(A=x^2-5y^2+3x\le\left(2y\right)^2-5y^2+3.2y=-y^2+6y=9-\left(y-3\right)^2\le9\)
=>\(A\le9\)
Dấu "=" xảy ra khi x=6;y=3
Đề còn gì nữa không bạn chớ chỉ vầy thì biết bao nhiêu nghiệm mà kể
Bạn có thể vào fx đc không anh
Khó hiểu quá ?????
em học rất nhiều dạng chứng minh rồi nhưn chưa dạng nào như thế này hết