Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số học sinh thích 1 môn là 40-2=38 em
Số HS thích cả 2 môn là 25+30-38=17 em
dap an cua ban la sai day lam lai di ko phai nhu the nay dau.
7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101
= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)
= 7/2 . (1 - 1/101)
= 7/2 . 100/101
= 350/101
\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)
\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(S_n=1.1!+2.2!+3.3!+...+n.n!\)
\(\text{Ta có:}\) \(1.1!=2!-1!\)
\(2.2!=3!-2!\)
\(3.3!=4!-3!\)
.......
\(n.n!=\left(n+1\right)!-n!\)
Cộng vế với vế ta đc:
\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)
\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)
Ta thấy \(\left|x+1\right|\ge0\)
\(\left|3-x\right|\ge0\)
\(\Rightarrow A=\left|x+1\right|+\left|3-x\right|\ge0\)
\(MinA=0\Leftrightarrow\hept{\begin{cases}x+1=0\\3-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)
Ta có : \(\left|x+4\right|\ge0\)
\(\Rightarrow2\left|x+4\right|-5\ge-5\)
\(MinB=-5\Leftrightarrow x+4=0\Rightarrow x=-4\)
Câu C tương tự nha
sao cái đề ngộ ngộ sao một lớp có tới 40 hs thi mà khi công lại số hs thích hc môn toán vs văn ra tới 55
1 :-37+37+14+16=30
2:-24+24+10+6=16
3:-23+23+{-25+15}=-10
4:-33+33+{-50+60}=10
bai2
1:-7264+7264+1543=1543
2:144-144-97=-97
3:-145+145-18=-18
4:111-11+27=127
Bài 1:
1) (-37) + 14 + 26 + 37
= ( 37 - 37) + ( 14+26)
= 0 + 40
= 40
2) ( -24) + 6 + 10 + 24
= ( 24-24) + 10 + 6
= 0 + 16
= 16
3) 15 + 23 + (-25) + ( -23)
= ( 15 - 25) + ( 23 - 23)
= -10 + 0 = -10
4) 60 + 33 + ( -50) + ( -33)
= ( 33-33) + ( 60 - 50)
= 0 + 10
= 10
3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
4)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
2, đặt tên biểu thức trên là A. Ta có :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
a) 5x - x = 64 \(\Rightarrow\) 4x = 64 \(\Rightarrow\) x = 16
b) \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
c) \(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
d) \(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}\)
\(=\frac{49}{99}\)