\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
M...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101

= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)

= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)

= 7/2 . (1 - 1/101)

= 7/2 . 100/101

= 350/101

21 tháng 2 2016

\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)

\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

23 tháng 2 2016

B : 7/2 =2/1.3+2/3.5+...+2/99.101

B:7/2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

B:7/2=1-1/101=100/101

B=100/101*7/2=700/202=350/101

23 tháng 2 2016

B=7/2(2/1.3+2/3.5+ ...+2/99.101)

B=7/2(1-1/3+1/3-1/5+...+1/99-1/101)

B=7/2(1-1/101)=7/2.100/101=350/101

k nha bạn

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)

25 tháng 4 2018

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

DD
18 tháng 5 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

DD
18 tháng 5 2021

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

28 tháng 2 2016

A nguyên 

<=> 2n + 7 chia hết n + 3

<=> 2n + 6 + 1 chia hết n + 3

<=> 2.(n + 3) + 1 chia hết n + 3

<=> 1 chia hết n + 3

<=> n + 3 thuộc Ư(1) = {-1; 1}

<=> n thuộc {-4; -2}

=> Tổng: -4 + (-2) = -6

7 tháng 3 2017

\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+....+\frac{7}{99.101}\)

\(=\frac{7}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{101}\right)=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

2 tháng 6 2016

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101 

=1-1/101 

=100/101 

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5 

=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5 

=(1-1/101).2,5

=100/101.2,5 

=250/101 

dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh 

2 tháng 6 2016

A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=1-\(\frac{1}{101}\)

=\(\frac{100}{101}\)

B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)

=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))

=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)

Chúc bạn học tốtleuleu