K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Không chắc đâu:v

a) Ta luôn có \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2\ge0\forall x,y,z\)

Để đẳng thức xảy ra tức là \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2=0\) (theo đề bài)

Thì \(\left\{{}\begin{matrix}x=1\\y=2x-3=2.1-3=-1\\z=-y=1\end{matrix}\right.\)

Vậy...

b) Ta luôn có \(VT\ge0\) với mọi x, y. Mà theo đề bài \(VT\le0\)

Do vậy \(VT=0\Leftrightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=\frac{5}{3}\end{matrix}\right.\)

Bài này của lớp 10 ?? Hơi lạ....

NV
24 tháng 10 2019

\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)

\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4m^2-2\left(-m+1\right)\)

\(=4m^2+2m+1\)

Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)

\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)

\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)

15 tháng 10 2017

\(A=1+2+2^2+2^3+...+2^{99}+2^{100}\\ 2A=2+2^2+2^3+...+2^{100}+2^{101}\\ 2A-A=\left(2+2^2+2^3+...+2^{100}+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{99}+2^{100}\right)\\ A=2^{101}-1\)

30 tháng 11 2019

Phương trình có 2 nghiệm x1;x2 thì :\(\Delta>0\)

\(\Delta=9+4.6=33>0\)

Theo định lí Vi-ét,ta có :

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-6\end{matrix}\right.\)

Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=3^2+12=21\)

=> Chọn A.(21)

13 tháng 10 2022

a: \(4A=4+2^4+..+2^{102}\)

=>\(3A=2^{102}-1\)

hay \(A=\dfrac{2^{102}-1}{3}\)

b: \(4B=2^3+2^5+...+2^{1003}\)

=>\(3B=2^{1003}-2\)

hay \(B=\dfrac{2^{1003}-2}{3}\)

27 tháng 9 2017

T: Câu hỏi của Nguyen Thi Thu Huong - Toán lớp 6 - Học toán với OnlineMath

a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{2008}\right)⋮7\)

b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)