Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
câu 1.
a. \(=\left(x+y\right)\left(x-5\right)\)
b. \(=\left(x+2y\right)^2\)
c. \(=\left(x-1\right)\left(x-6\right)\)
câu 3.
a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)
Vậy \(minA=2010\Leftrightarrow x=-1\)
b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)
Vì x, y nguyên nên có các TH :
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)
câu 6.
a. giống câu 3
b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)
\(a)3^5.3.3^{10}:3^{15}=3^{5+1+10-15}=3\)
\(b)4^8.2^5.8^3=\left(2^2\right)^8.2^5.\left(2^3\right)^3=2^{16}.2^5.2^9=2^{16+5+9}=2^{30}\)
\(c)16^2:4^3=\left(4^2\right)^2:4^3=4^4:4^3=4\)
a,x2- 22 = 32
⇔ x2=32+22
⇔ x2=36
⇔ x= \(\pm6\)
vậy x=\(\pm6\)
b,x3+ 5 =4
⇔ x3=4-5
⇔ x3=-1
⇔ x=-1
vậy x=-1
c, x3- 4.x= 0
⇔ x(x2-4)=0
⇔ x(x-2)(x+2)=0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
vậy .....
a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{2008}\right)⋮7\)
b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)
c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)
e, ntc: x-y
f, đối dấu --> ntc
g, như ý f
h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)
i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)
\(A=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^8\)
=>\(A=2^8-1\)
c/ \(\left\{{}\begin{matrix}m< 0\\26+5m< 0\end{matrix}\right.\) \(\Rightarrow m< -\frac{26}{5}\)
d/ Biểu thức có vấn đề, sao x lại nằm trong căn thế kia? Nếu vậy thì đây đâu phải tam thức bậc 2, nó là hàm vô tỉ rồi
f/ \(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-3m+7< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< 2\\m>\frac{7}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
a/ \(\left\{{}\begin{matrix}m-4< 0\\\Delta=\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< \frac{3}{7}\)
b/ \(\left\{{}\begin{matrix}m+2< 0\\25+16\left(m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\16m< -57\end{matrix}\right.\) \(\Rightarrow m< -4\)
a: \(4A=4+2^4+..+2^{102}\)
=>\(3A=2^{102}-1\)
hay \(A=\dfrac{2^{102}-1}{3}\)
b: \(4B=2^3+2^5+...+2^{1003}\)
=>\(3B=2^{1003}-2\)
hay \(B=\dfrac{2^{1003}-2}{3}\)