K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2022

a: \(4A=4+2^4+..+2^{102}\)

=>\(3A=2^{102}-1\)

hay \(A=\dfrac{2^{102}-1}{3}\)

b: \(4B=2^3+2^5+...+2^{1003}\)

=>\(3B=2^{1003}-2\)

hay \(B=\dfrac{2^{1003}-2}{3}\)

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)

8 tháng 12 2019

câu 1.

a. \(=\left(x+y\right)\left(x-5\right)\)

b. \(=\left(x+2y\right)^2\)

c. \(=\left(x-1\right)\left(x-6\right)\)

câu 3.

a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)

Vậy \(minA=2010\Leftrightarrow x=-1\)

b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)

Vì x, y nguyên nên có các TH :

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)

câu 6.

a. giống câu 3

b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)

4 tháng 7 2018

\(a)3^5.3.3^{10}:3^{15}=3^{5+1+10-15}=3\)

\(b)4^8.2^5.8^3=\left(2^2\right)^8.2^5.\left(2^3\right)^3=2^{16}.2^5.2^9=2^{16+5+9}=2^{30}\)

\(c)16^2:4^3=\left(4^2\right)^2:4^3=4^4:4^3=4\)

4 tháng 7 2018

a,x2- 22 = 32

⇔ x2=32+22

⇔ x2=36

⇔ x= \(\pm6\)

vậy x=\(\pm6\)

b,x3+ 5 =4

⇔ x3=4-5

⇔ x3=-1

⇔ x=-1

vậy x=-1

c, x3- 4.x= 0

⇔ x(x2-4)=0

⇔ x(x-2)(x+2)=0

\(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

vậy .....

a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{2008}\right)⋮7\)

b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

10 tháng 12 2017

a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)

c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)

e, ntc: x-y

f, đối dấu --> ntc

g, như ý f

h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)

i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)

10 tháng 12 2017

thanks

\(A=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)

\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^8\)

=>\(A=2^8-1\)

NV
18 tháng 2 2020

c/ \(\left\{{}\begin{matrix}m< 0\\26+5m< 0\end{matrix}\right.\) \(\Rightarrow m< -\frac{26}{5}\)

d/ Biểu thức có vấn đề, sao x lại nằm trong căn thế kia? Nếu vậy thì đây đâu phải tam thức bậc 2, nó là hàm vô tỉ rồi

f/ \(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-3m+7< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 2\\m>\frac{7}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}m-4< 0\\\Delta=\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< \frac{3}{7}\)

b/ \(\left\{{}\begin{matrix}m+2< 0\\25+16\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\16m< -57\end{matrix}\right.\) \(\Rightarrow m< -4\)