K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+\sqrt{5+\sqrt{x-1}}=6\)

\(\Leftrightarrow x-6+\sqrt{5+\sqrt{x-1}}=0\)

\(\Leftrightarrow x-1-5+\sqrt{5+\sqrt{x-1}}=0\)

Đặt \(\sqrt{x-1}=t\), ta có

\(t^2-5+\sqrt{5+t}=0\)

P/s tới đây giải tiếp nha bn :))

19 tháng 8 2017

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

19 tháng 8 2017

đúng nhưng b,c,d đâu

28 tháng 7 2018

a)  ĐK:  \(1\le x\le6\)

Đặt:  \(y=\sqrt{x-1}\ge0\) pt trở thành:

\(y^2+\sqrt{y+5}=5\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y^4-10y^2-y+20=0\\0\le y\le\sqrt{5}\end{cases}}\)

Xét pt:   \(y^4-10y^2-y+20=0\)

\(\Leftrightarrow\)\(y^4=10y^2+y-20\)

\(\Leftrightarrow\)\(y^4+2my^2+m^2=\left(10+2m\right)y^2+y+m^2-20\)

Ta có:  \(\Delta_{VP}=1-4\left(m^2-20\right)\left(10+2m\right)=0\)

\(\Leftrightarrow\)\(m=-\frac{9}{2}\)

Viết lại pt ta có:

\(y^4-9y^2+\left(\frac{9}{2}\right)^2=y^4+y+\frac{1}{4}\)

\(\Leftrightarrow\)\(\left(y^2-\frac{9}{2}\right)^2-\left(y+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(\left(y^2-y-5\right)\left(y^2+y-4\right)=0\)

giải ra tìm đc y  t/m là:   \(y=\frac{-1+\sqrt{17}}{2}\)

\(\Rightarrow\)\(x=\frac{11-\sqrt{17}}{2}\)

Vậy....

28 tháng 7 2018

b)  ĐK:  \(x\ge-\frac{4}{5}\)

Đặt:  \(y=\sqrt{4x+5}\ge0\)pt trở thành:

\(y^4-22y^2-8y+77=0\)

\(\Leftrightarrow\)\(y^4=22y^2+8y-77\)

\(\Leftrightarrow\)\(y^4+2my^2+m^2=\left(22+2m\right)y^2+8y+m^2-77\)

Ta có:  \(\Delta_{VP}=1-4\left(22+2m\right)\left(m^2-77\right)=0\)

\(\Leftrightarrow\)\(m=-9\)

Viết lại pt ta có:

\(y^4-18y^2+81=4y^2+8y+4\)

\(\Leftrightarrow\)\(\left(y^2-9\right)^2-\left(2y+2\right)^2=0\)

\(\Leftrightarrow\)\(\left(y^2+2y-7\right)\left(y^2-2y-11\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-1+2\sqrt{2}\\y=1+2\sqrt{3}\end{cases}}\) (t/m)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1-\sqrt{2}\\x=2+\sqrt{3}\end{cases}}\)

Vậy....

p/s:do pt ban đầu bậc 4 nên ở 2 câu mk thêm 2my^2 + m^2 là để dễ dàng phân tích thành nhân tử. bạn có thể bỏ và phân tích ngay pt ban đầu

2 tháng 7 2018

a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow|x-3|=\sqrt{5}-1\)

Làm nốt

b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)

Làm nốt

c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)

Làm nốt

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

29 tháng 6 2018

xin bài này , 10 phút nữa làm

29 tháng 6 2018

bn kiểm tra lại đề câu a nhé

b) ĐKXĐ: \(\forall x\)

       \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\)\(\left|x-1\right|+\left|x-3\right|=2\) (1)

Nếu  \(x< 1\)thì:  \(\left(1\right)\Leftrightarrow\left(1-x\right)+\left(3-x\right)=2\)

                                      \(\Leftrightarrow\) \(4-2x=2\) \(\Leftrightarrow\) \(x=1\)(loại)

Nếu \(1\le x< 3\)thì:  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(3-x\right)=2\)

                                               \(\Leftrightarrow\) \(x-1+3-x=2\)\(\Leftrightarrow\)\(0x=0\)  luôn đúng

Nếu \(x\ge3\)thì  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(x-3\right)=2\)

                                     \(\Leftrightarrow\) \(2x-4=2\) \(\Leftrightarrow\) \(x=3\) luôn đúng

Vậy...

30 tháng 8 2019

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

30 tháng 8 2019

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<