Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
a) x3- 6x2+11x - 66 = 0
⇔x2( x - 6) + 11( x - 6) = 0
⇔( x - 6)( x2 + 11 ) = 0
Do : x2 + 11 > 0 ∀x
⇒ x - 6 = 0
⇒ x = 6
Vậy,...
b) x3- x2- 21x + 45=0
⇔ x3 - 3x2 + 2x2 - 6x - 15x + 45 = 0
⇔ x2( x - 3) + 2x( x - 3) - 15( x - 3) = 0
⇔ ( x - 3)( x2 + 2x - 15 ) = 0
⇔ ( x - 3)( x2 - 3x + 5x - 15 ) = 0
⇔ ( x - 3)[ x( x - 3) + 5( x - 3) ] = 0
⇔ ( x - 3)2( x + 5) = 0
⇔ x = 3 hoặc x = -5
Vậy,...
a: =>(2x-1-x-3)(2x-1+x+3)=0
=>(x-4)(3x+2)=0
=>x=-2/3 hoặc x=4
b: =>-5x^2+9x=0
=>-x(5x-9)=0
=>x=0 hoặc x=9/5
c: =>2x^2-10x-x+5=0
=>(x-5)(2x-1)=0
=>x=1/2 hoặc x=5
e: =>2x(x^2-25)=0
=>x(x-5)(x+5)=0
hay \(x\in\left\{0;5;-5\right\}\)
9x2-6x-3=0
=>9x2-9x+3x-3=0
=>(x-1)(9x-3)=0
=>x-1=0 hoặc 9x+3 = 0
=> x=1 hoặc x=-1/3
b. x3+9x2+27x+19=0
x3+x2+8x2+8x+19x+19=0
(x+1)(x2+8x+19)=0
x+1=0 => x=-1
x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x
a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)
\(\Rightarrow3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)
\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)
Mk k co thoi gian. buoc tiep theo tu lam not nhe
a, \(x^2-x-14x+14=0\)
\(=>x\left(x-1\right)-14\left(x-1\right)=0\)
\(=>\left(x-14\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-14=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\x=1\end{matrix}\right.\)
b, \(x^2+2x+7x+14=0\)
\(=>x\left(x+2\right)+7\left(x+2\right)=0\)
\(=>\left(x+7\right)\left(x+2\right)=0\)
\(< =>\left\{{}\begin{matrix}x+7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=-2\end{matrix}\right.\)
c, \(6x^2-6x-5x+5=0\)
\(=>6x\left(x-1\right)-5\left(x-1\right)=0\)
\(=>\left(6x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}\\x=1\end{matrix}\right.\)
d, \(6x^2+3x+10x+5=0\)
\(=>3x\left(2x+1\right)+5\left(2x+1\right)=0\)
\(=>\left(3x+5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
e, \(10x^2+10x+3x+3=0\)
\(=>10x\left(x+1\right)+3\left(x+1\right)=0\)
\(=>\left(10x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x+3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{10}\\x=-1\end{matrix}\right.\)
CHÚC BẠN HỌC TỐT...
a) \(x^2+7x+10=0\)
\(\Leftrightarrow x^2+2x+5x+10=0\)
\(\Leftrightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-5\end{cases}}\)
Vậy....
b) \(x^3=25x\)
\(\Leftrightarrow x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\left\{\pm5\right\}\end{cases}}\)
Vậy....
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3