Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge0+\frac{7}{4}=\frac{7}{4}.\) Dâu bàng xay ra khi: \(x=\frac{-1}{2}\)
\(B=4x^2-4x-1=\left(4x^2-4x+1\right)-2=\left(2x-1\right)^2-2\ge0-2=-2\Rightarrow B_{min}=-2\) Dâu bàng xay ra: \(x=\frac{1}{2}\)
\(C=x^2+y^2+2x-4y+2=x^2+y^2+2x-4y+5-3=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-3=\left(x+1\right)^2+\left(y-2\right)^2-3\ge0+0-3=-3\) Dâu bàng xay ra\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
\(x^2-3x+xy-3y\)
\(=\left(x^2+xy\right)-\left(3x+3y\right)\)
\(=x.\left(x+y\right)-3.\left(x+y\right)\)
\(=\left(x-3\right).\left(x+y\right)\)
\(2x^2-x+2xy-y\)
\(=2x^2-\left(x-2xy+y\right)\)
\(=2x^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x\right)^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x-x+y\right).\left(\sqrt{2}x+x-y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x.\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1+x\right)\)
\(16+2xy-x^2-y^2\)
\(=16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=[4-\left(x-y\right)].[4+\left(x-y\right)]\)
\(=\left(4-x+y\right).\left(4+x-y\right)\)
1, (x2-x+2)2-(x-2)2=(x2-x+2-x+2)(x2-x+2+x-2)=(x2-2x+4)x2
2,a.x3+4x2-29x+24=0
\(\Leftrightarrow\)x3-3x2+7x2-21x-8x+24=0
\(\Leftrightarrow\)(x3-3x2)+(7x2-21x)-(8x+24)=0
\(\Leftrightarrow\)x2(x-3)+7x(x-3)-8(x-3)=0
\(\Leftrightarrow\)(x-3)(x2-x+8x-8)=0
\(\Leftrightarrow\)(x-3)(x-1)(x+8)=0
\(\Leftrightarrow\)\(\left[\begin{matrix}x-3=0\\x-1=0\\x+8=0\end{matrix}\right.\)\(\left[\begin{matrix}x=3\\x=1\\x=-8\end{matrix}\right.\)
vậy pt có tập nghiệm là S=\(\left\{-8;1;3\right\}\)
b. đặt x2-x=y ta có:
y2-14y+24=0 \(\Leftrightarrow\)(y2-2.7y+49)-25=0 \(\Leftrightarrow\)(y-7)2-52=0 \(\Leftrightarrow\)(y-12)(y-2)=0 \(\Leftrightarrow\left[\begin{matrix}y=12\\y=2\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[\begin{matrix}x^2-x=12\\x^2-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2-x-12=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}\left(x+3\right)\left(x-4\right)=0\\\left(x-2\right)\left(x+1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-3\\x=4\\x=2\\x=-1\end{matrix}\right.\)
vậy pt có tập nghiệm là S=\(\left\{-3;-1;2;4\right\}\)
3.ta có : 5x2+5y2+8xy+2x-2y+2=0
\(\Leftrightarrow\)(4x2+8xy+4y2)+(x2+2x+1)+(y2-2y+1)=0
\(\Leftrightarrow\)(2x+2y)2+(x+1)2+(y-1)2=0
lại có (2x+2y)2+(x+1)2+(y-1)2\(\ge\)0 dấu = chỉ sảy ra khi và chỉ khi \(\left\{\begin{matrix}\left(2x+2y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}2x+2y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
vậy x=-1 và y=1
d.Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath