Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x-21>0\)
\(\Leftrightarrow\) \(x^2-4x+4>25\)
\(\Leftrightarrow\) \(\left(x-2\right)^2>25\)
\(\Leftrightarrow\) \(\left|x-2\right|>5\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>5\\x-2>-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>7\\x>-3\end{cases}}}\)
\(x^2-4x-21>0\)
\(x^2-4x+4-25>0\)
\(\left(x-2\right)^2>25\)
Ta có: \(25=5^2=\left(-5\right)^2\)
TH1: \(\left(x-2\right)^2>5^2\)
\(x-2>5\)
\(x>7\)
TH2: \(\left(x-2\right)^2>\left(-5\right)^2\)
\(x-2>-5\)
\(x>-3\)
Kết hợp cả 2 TH ta đc x>-3
=.= hok tốt!!
Ta có: \(2x^2-5x+5=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)+\dfrac{15}{8}=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}>0\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-xy-yz-zx\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)=1\)
x2 - x +1 > 0
<=> x2 - 2.1/2.x + 1/4 +3/4 >0
<=> (x-1/2)2 + 3/4 > 0
<=> (x-1/2)2 > 3/4
tự tính tiếp ạ
Trả lời
Ta có \(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\) Dấu "=" xảy ra khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) dấu "=" khi x=1/2
Mà \(\frac{3}{4}>0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x^2-x+1>0\)