Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - x +1 > 0
<=> x2 - 2.1/2.x + 1/4 +3/4 >0
<=> (x-1/2)2 + 3/4 > 0
<=> (x-1/2)2 > 3/4
tự tính tiếp ạ
Trả lời
Ta có \(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\) Dấu "=" xảy ra khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) dấu "=" khi x=1/2
Mà \(\frac{3}{4}>0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x^2-x+1>0\)
Ta có: \(2x^2-5x+5=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)+\dfrac{15}{8}=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}>0\)
\(\sqrt{x^2\left(x-1\right)^2}=\left|x\left(x-1\right)\right|\)
\(x< 0\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x< 0\end{matrix}\right.\Leftrightarrow x\left(x-1\right)>0\Rightarrow\left|x\left(x-1\right)\right|=x\left(x-1\right)=x^2-x\)
\(b,\sqrt{13x}.\sqrt{\frac{52}{x}}=\sqrt{\frac{13.52.x}{x}}=\sqrt{13.52}=\sqrt{13^2.2^2}=\sqrt{26^2}=26\)
Lời giải :
a) \(\sqrt{x^2\left(x-1\right)^2}=\left|x\right|\cdot\left|x-1\right|=-x\left(1-x\right)=x^2-x\)
b) \(\sqrt{13x}\cdot\sqrt{\frac{52}{x}}=\sqrt{\frac{13x\cdot52}{x}}=\sqrt{676}=26\)
c) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)
d) \(\sqrt{\frac{9+12x+4x^2}{y^2}}=\sqrt{\frac{\left(2x+3\right)^2}{y^2}}=\frac{2x+3}{-y}=\frac{-2x-3}{y}\)
Bài làm:
a) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(4x^2-5=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)
c) \(3x^2-1=\left(x\sqrt{3}-1\right)\left(x\sqrt{3}+1\right)\)
d) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
f) \(9x-4=\left(3\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
\(x^2-4x-21>0\)
\(\Leftrightarrow\) \(x^2-4x+4>25\)
\(\Leftrightarrow\) \(\left(x-2\right)^2>25\)
\(\Leftrightarrow\) \(\left|x-2\right|>5\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>5\\x-2>-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>7\\x>-3\end{cases}}}\)
\(x^2-4x-21>0\)
\(x^2-4x+4-25>0\)
\(\left(x-2\right)^2>25\)
Ta có: \(25=5^2=\left(-5\right)^2\)
TH1: \(\left(x-2\right)^2>5^2\)
\(x-2>5\)
\(x>7\)
TH2: \(\left(x-2\right)^2>\left(-5\right)^2\)
\(x-2>-5\)
\(x>-3\)
Kết hợp cả 2 TH ta đc x>-3
=.= hok tốt!!