K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

3x-5>-2x+5

⇔ 3x+2x > 5+5

⇔ 5x >5

⇔ x>1

vậy bpt có tập nghiệm là S={ x/ x>1}

26 tháng 4 2019
https://i.imgur.com/P6uR3Wt.jpg
27 tháng 8 2020

a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

Ta có \(x^2+1\ge1>0\forall x\)

Để bpt < 0 => 2x( 3x - 5 ) < 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)

2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )

Vậy nghiệm của bất phương trình là 0 < x < 5/3

b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))

<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)

<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)

<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)

<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)

\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)

\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)

Xét các trường hợp

1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)

+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)

+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)

Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1

c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))

\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)

\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)

\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)

\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)

Xét hai trường hợp

1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)

Vậy nghiệm của bất phương trình là \(-18\le x< -5\)

d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))

\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)

\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)

\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

Vậy nghiệm của bất phương trình là x > 3

4 tháng 7 2016

bạn phân tích biểu thức thành nhân tử rồi xét :

Nếu >0 thì các nhân tử phải cùng âm hoặc dương

nếu <0 thì các nhân tử trái dấu

tương tự như phân số 

nếu >0 thì tử và mẫu cùng dấu

nếu <0 thì trái dấu

:) chúc bạn làm tốt nha dễ mà

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< \dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)< 5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< 5x^2-14x+21\)

=>-8x-3<-14x+21

=>6x<24

hay x<4

3: \(\dfrac{3x-2}{4}< \dfrac{3x+3}{6}\)

\(\Leftrightarrow3\left(3x-2\right)< 2\left(3x+3\right)\)

=>9x-6<6x+6

=>3x<12

hay x<4

2 tháng 5 2017

a) \(\dfrac{2x-3}{35}\) + \(\dfrac{x\left(x-2\right)}{7}\) < \(\dfrac{x^2}{7}\) - \(\dfrac{2x-3}{5}\)

<=> \(\dfrac{2x-3}{35}\) + \(\dfrac{5x\left(x-2\right)}{7.5}\) < \(\dfrac{5x^2}{7.5}\) - \(\dfrac{7\left(2x-3\right)}{7.5}\)

<=> 2x-3 + 5x2-10x < 5x2 - 14x + 21

<=> 5x2 - 5x2 + 2x -10x + 14x < 21 + 3

<=> 6x < 24

<=> x < 4

vậy bpt có tập nghiệm S={ x < 4 }

2 tháng 5 2017

b) \(\dfrac{3x-2}{4}\) < \(\dfrac{3x+3}{6}\)

<=> \(\dfrac{6\left(3x-2\right)}{6.4}\) < \(\dfrac{4\left(3x+3\right)}{6.4}\)

<=> 18x - 12 < 12x +12

<=> 18x - 12x < 12 + 12

<=>6x < 24

<=> x < 4

vậy bpt có tập nghiệm S={ x < 4 }