K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

\(\dfrac{x^2+2x+2}{x+1}>\dfrac{x^2+4x+5}{x+2}-1\left(x\ne-1,-2\right)\)

\(\Leftrightarrow\dfrac{x^2+2x+1+1}{x+1}>\dfrac{x^2+4x+4+1}{x+2}-1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}>\dfrac{\left(x+2\right)^2+1}{x+2}-1\)\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x+1}+\dfrac{1}{x+1}>\dfrac{\left(x+2\right)^2}{x+2}+\dfrac{1}{x+2}-1\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}>x+2+\dfrac{1}{x+2}-1\)

\(\Leftrightarrow\dfrac{1}{x+1}>\dfrac{1}{x+2}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}>0\)

\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}>0\)mà 1 > 0 \(\Rightarrow\left(x+1\right)\left(x+2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -2\end{matrix}\right.\)

20 tháng 10 2021

x2+2x+2x+1>x2+4x+5x+2−1(x≠−1,−2)x2+2x+2x+1>x2+4x+5x+2−1(x≠−1,−2)

⇔x2+2x+1+1x+1>x2+4x+4+1x+2−1⇔x2+2x+1+1x+1>x2+4x+4+1x+2−1

⇔(x+1)2+1x+1>(x+2)2+1x+2−1⇔(x+1)2+1x+1>(x+2)2+1x+2−1⇔(x+1)2x+1+1x+1>(x+2)2x+2+1x+2−1⇔(x+1)2x+1+1x+1>(x+2)2x+2+1x+2−1

⇔x+1+1x+1>x+2+1x+2−1⇔x+1+1x+1>x+2+1x+2−1

⇔1x+1>1x+2⇔1x+1>1x+2

⇔1x+1−1x+2>0⇔1x+1−1x+2>0

⇔x+2−x−1(x+1)(x+2)>0⇔x+2−x−1(x+1)(x+2)>0

⇔1(x+1)(x+2)>0⇔1(x+1)(x+2)>0mà 1 > 0 ⇒(x+1)(x+2)>0⇒(x+1)(x+2)>0

⇔⎡⎢ ⎢ ⎢ ⎢⎣{x+1>0x+2>0{x+1<0x+2<0⇔⎡⎢ ⎢ ⎢ ⎢⎣{x>−1x>−2{x<−1x<−2⇔[x>−1x<−2

17 tháng 1 2019

\(Giải:\)

\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)

\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)

\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)

\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)

BPT đã được giải quyết

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2+2x+2\right)-\left(x^2+4x+5\right)\left(x+1\right)+\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow\dfrac{x^3+4x^2+6x+4-\left(x^3+5x^2+9x+5\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)}>0\)

=>\(\dfrac{x^3+5x^2+9x+6-x^3-5x^2-9x-5}{\left(x+1\right)\left(x+2\right)}>0\)

=>(x+1)(x+2)>0

=>x>-1 hoặc x<-2

a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

10 tháng 4 2021

ĐKXĐ : x khác -1

\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+3x+4}{x+1}\\ \Leftrightarrow\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+2x+2}{x+1}+\dfrac{x+2}{x+1}\\ \Leftrightarrow\dfrac{x+2}{x+1}\le0\\ \Leftrightarrow x+2\ge0;x+1< 0\Leftrightarrow-1>x\ge-2\)

5 tháng 4 2017

2.\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\) (ĐKXĐ: \(x\ne0;2\))

\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\\ \Leftrightarrow\dfrac{x^2}{\left(x-2\right)x}+\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)x}>\dfrac{2x\left(x-2\right)}{\left(x-2\right)x}\\ \Rightarrow x^2+x^2-4>2x^2-4x\)

\(\Leftrightarrow-4>-4x\Leftrightarrow x>1\)

vậy bất phương trình có tập nghiệm là \(S=\left\{x|x>1;x\ne2\right\}\)

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

22 tháng 4 2017

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 4 2018

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}