Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Giải:\)
\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)
\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)
BPT đã được giải quyết
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a: \(x>3:\dfrac{1}{2}=6\)
b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)
c: \(x>-4:\dfrac{2}{3}=-6\)
d: \(x< -6:\dfrac{3}{5}=-10\)
a) \(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\\ < =>\dfrac{2-4x}{8}-\dfrac{16}{8}< \dfrac{1-5x}{8}\\ < =>2-4x-16< 1-5x\\ < =>-4x+5x< 1-2+16\\ < =>x< 15\)
Vậy : tập nghiệm của bất phương trình là S= \(\left\{x|x< 15\right\}\)
b) \(\dfrac{x-1}{4}-1>\dfrac{x+1}{3}+8\\ < =>\dfrac{3x-3}{12}-\dfrac{12}{12}>\dfrac{4x+4}{12}+\dfrac{96}{12}\\ < =>3x-3-12>4x+4+96\\ < =>3x-4x>4+96+3+12\\ < =>-x>115\\ =>x< -115\)
Vậy: tập nghiệm của bất phương trình là S=\(\left\{x|x< -115\right\}\)
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
Giải các bất phương trình sau :
a) \(\left(x-1\right)\left(x+3\right)< 0\)
Lập bảng xét dấu :
x x-1 x+3 (x-1)(x+3) -3 1 - 0 + - 0 - + + + - +
Nghiệm của bất phương trình là : \(-3< x< 1\)
b) \(\left(2x-1\right)\left(x+2\right)>0\)
Lập bảng xét dấu :
x 2x-1 x+2 (2x-1)(x+2) -2 1 2 0 0 - - + - + + - + +
Nghiệm của bất phương trình là : \(x< -2;x>\dfrac{1}{2}\)
c) \(\dfrac{3x-2}{2x-1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{3x+2}{x+1}>2\)
\(\Leftrightarrow\dfrac{3x+2}{x+1}-\dfrac{2\left(x+1\right)}{x+1}>0\)
\(\Leftrightarrow\dfrac{3x+2-2x-2}{x+1}>0\)
\(\Leftrightarrow\dfrac{x}{x+1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}x\ge0\\x< -1\end{matrix}\right.\)
a, (x-1)(x+3) <0
TH1: x-1<0<=>x<1
x+3>0<=>x>-3
=>-3<x<1
TH2: x-1>0<=>x>1
x+3<0<=>x<-3
=>Vô lý
Vậy S={x|-3<x<1}
b,(2x-1)(x+2)>0
TH1: 2x-1\(\ge\)0<=>2x\(\ge\)1<=>x\(\ge\)\(\dfrac{1}{2}\)
x+2\(\ge\)0<=>x\(\ge\)-2
=>x\(\ge\)\(\dfrac{1}{2}\)
TH2: 2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)
x+2<0<=>x<-2
=>x<-2
Vậy S={x|x<-2 hoặc x\(\ge\)\(\dfrac{1}{2}\)}
c, \(\dfrac{3x-2}{2x-1}\)>0 (Tử và mẫu cùng dấu)
TH1 3x-2\(\ge\)0<=>3x\(\ge\)2<=>x\(\ge\)2
2x-1>0<=>2x>1<=>x>\(\dfrac{1}{2}\)
=>x\(\ge\)2
TH2: 3x-2<0<=>3x<2<=>x<\(\dfrac{2}{3}\)
2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)
=>x<\(\dfrac{1}{2}\)
Vậy S={x|x\(\ge\)2 hoặc x<\(\dfrac{1}{2}\)}
d,\(\dfrac{3x+2}{x+1}>2\)
<=>\(\dfrac{3x+2}{x+1}-2\)>0
<=>\(\dfrac{3x-2-2x-2}{x+1}\)>0
<=>\(\dfrac{x-4}{x+1}\)>0 (Tử và mẫu cùng dấu)
TH1: x-4\(\ge\)0<=>x\(\ge\)4
x+1>0<=>x>-1
=>x\(\ge\)-4
TH2: x-4<0<=>x<4
x+1<0<=>x<-1
=>x<-1
Vậy S={x|x\(\ge\)-4 hoặc x<-1}
b: |2x+3|<7
=>2x+3>-7 và 2x+3<7
=>x>-5 và x<2
c: |2x-2|>5
=>2x-2>5 hoặc 2x-2<-5
=>2x>7 hoặc 2x<-3
=>x>7/2 hoặc x<-3/2
Bài 1. Giải các phương trình sau
a) \(5\left(x-2\right)=3\left(x+1\right)\)
\(\Leftrightarrow5x-10=3x+3\)
\(\Leftrightarrow5x-3x=10+3\)
\(\Leftrightarrow2x=13\)
\(\Leftrightarrow x=\dfrac{13}{2}\)
Vậy \(S=\left\{\dfrac{13}{2}\right\}\)
b) \(\dfrac{2x}{x+1}+\dfrac{3}{x-2}=2\left(1\right)\)
Điều kiện: \(x+1\ne0\Leftrightarrow x\ne-1\) và \(x-2\ne0\Leftrightarrow x\ne2\)
\(\left(1\right)\Leftrightarrow\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{2\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-4x+2x-4\)
\(\Leftrightarrow2x^2-4x+3x-2x^2+4x-2x=-3-4\)
\(\Leftrightarrow x=-7\left(N\right)\)
Vậy \(S=\left\{-7\right\}\)
c) \(|2x+7|=3\)
\(\Leftrightarrow2x+7=3\) hoặc \(2x+7=-3\)
.. \(2x+7=3\Leftrightarrow2x=-4\Leftrightarrow x=-2\)
.. \(2x+7=-3\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
Vậy \(S=\left\{-2;-5\right\}\)
Bài 2 bạn ghi rõ đề lại nha r mik giải lun cho
Bài 2. Giải các bất phương trình sau:
a) \(\left(x+2\right)^2< \left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+4x+4< x^2-1\)
\(\Leftrightarrow x^2+4x-x^2< -4-1\)
\(\Leftrightarrow4x< -5\)
\(\Leftrightarrow x>-\dfrac{5}{4}\)
Vậy \(S=\left\{x/x< -\dfrac{5}{4}\right\}\)
Câu b mik tính ko ra nhá sorry!!!!!!!!!!
2.\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\) (ĐKXĐ: \(x\ne0;2\))
\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\\ \Leftrightarrow\dfrac{x^2}{\left(x-2\right)x}+\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)x}>\dfrac{2x\left(x-2\right)}{\left(x-2\right)x}\\ \Rightarrow x^2+x^2-4>2x^2-4x\)
\(\Leftrightarrow-4>-4x\Leftrightarrow x>1\)
vậy bất phương trình có tập nghiệm là \(S=\left\{x|x>1;x\ne2\right\}\)