K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Đáp án: C

Ta có:

sin 6 x  +  c o s 6 x  = ( sin 2 x ) 3  + ( cos 2 x ) 3

= ( sin 2 x  +  c o s 2 x )( sin 4 x  -  sin 2 x cos 2 x  +  c o s 4 x )

=  sin 4 x  -  sin 2 x cos 2 x  +  c o s 4 x

= ( sin 2 x  +  cos 2 x ) 2  - 3  sin 2 x cos 2 x

= 1 - 3 sin 2 x cos 2 x

= 1 - (3/4)  sin 2 2 x

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy giá trị nhỏ nhất của  sin 6 x  +  c o s 6 x  là 1/4

Dấu “=” xảy ra ⇔  sin 2 2 x  = 1 ⇔ sin⁡2x = 1 hoặc sin⁡2x = -1

13 tháng 2 2018

\(1B\backslash2B\backslash3B\)

Chọn đáp án đúng: Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây? A. D(3;1) B. A(1;2) C. C\(\left(1;\frac{1}{2}\right)\) D. B(2;1) Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây? A. n(m-1)2-m(n-1)2≥0 B. (m-n)2 ≥2mn C. (m+n)2 +m-n≥0 D. m2+n2≥2mn Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có: A. giá trị nhỏ nhất của m là 4 B....
Đọc tiếp

Chọn đáp án đúng:

Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây?

A. D(3;1)

B. A(1;2)

C. C\(\left(1;\frac{1}{2}\right)\)

D. B(2;1)

Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây?

A. n(m-1)2-m(n-1)2≥0

B. (m-n)2 ≥2mn

C. (m+n)2 +m-n≥0

D. m2+n2≥2mn

Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có:

A. giá trị nhỏ nhất của m là 4

B. giá trị lớn nhất của m là 4

C. giá trị lớn nhất của m là 2

D. giá trị nhỏ nhất của m là 2

Câu 4: Bpt 5x-1>\(\frac{2x}{5}+3\) có nghiệm là:

A. ∀x

B. x>\(\frac{20}{23}\)

C. x<2

D. x>-\(\frac{5}{2}\)

Câu 5: Cho nhị thức bậc nhất f(x)=23x-20. Khẳng định nào sau đây đúng?

A. f(x)>0, ∀x∈\(\left(-\infty;\frac{20}{23}\right)\)

B. f(x)>0, ∀x∈⛇

C. f(x)>0, ∀x∈\(\left(\frac{20}{23};+\infty\right)\)

D. f(x)>0, ∀x>-\(\frac{5}{2}\)

Câu 6: Điểm nào sau đây thuộc miền nghiệm của hệ bpt \(\left\{{}\begin{matrix}2x-5-1>0\\2x+y+5>0\\x+y+1< 0\end{matrix}\right.\) A. (0;-2) B. (0,0) C. (0;2) D.(1;0) Câu 7: Miền nghiệm của bất phương trình 3x+2(y+3)>4(x+1)-y+3 là phần mặt phẳng chứa điểm nào? A. (3;1) B. (0;0) C. (3;0) D. (1;1) Câu 8: Cho hệ bpt \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1\le0\end{matrix}\right.\) có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng? A. (-4;\(\sqrt{3}\))∈S B. (1;-1) ∈S C. (-1;\(\sqrt{5}\))∈S D. (1;-\(\sqrt{3}\))∈S Câu 9: Suy luận nào sau đây đúng? A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\frac{a}{b}>\frac{b}{d}\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\) C. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\) D. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) Câu 10: Cho hệ bất phương trình \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1>0\end{matrix}\right.\)có tập nghiệm là S. Khẳng định nào sau đây đúng? A. \(\left(\sqrt{2};0\right)\notin S\) B. (-1;2) ∉ S C. \(\left(\sqrt{3};0\right)\)∈S D. \(\left(1;-\sqrt{3}\right)\in S\)

1
NV
5 tháng 5 2020

Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)

Câu 2: đáp án D

\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)

Câu 3: đáp án D

\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)

Câu 4:

\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)

Câu 5:

\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C

Câu 6:

Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề

Câu 7:

\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)

\(\Leftrightarrow x-3y+1< 0\)

Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng

Câu 8:

Thay tọa độ vào chỉ đáp án D thỏa mãn

Câu 9:

Đáp án C đúng

Câu 10:

Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)

NV
7 tháng 5 2020

1.

\(y\left(0\right)=-4\) ; \(y\left(5\right)=-4\) ; \(y\left(\frac{5}{3}\right)=\frac{392}{27}\)

\(\Rightarrow y_{max}=\frac{392}{27}\) khi \(x=\frac{5}{3}\)

2.

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(3x+m\le0\Rightarrow x\le-\frac{m}{3}\)

Hệ có nghiệm khi \(-\frac{m}{3}\ge\frac{1}{2}\Rightarrow m\le-\frac{3}{2}\)

3.

\(P=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(P\ge2\sqrt{\frac{a+b}{a+b}}+\frac{3}{1}=5\)

\(P_{min}=5\) khi \(a=b=\frac{1}{2}\)

4.

\(y=2x+\frac{3}{x}\ge2\sqrt{\frac{6x}{x}}=2\sqrt{6}\)

Dấu "=" xảy ra khi \(2x=\frac{3}{x}\Leftrightarrow x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\)

17 tháng 5 2020

cảm ơn bạn nha haha

1. Kết quả của phép tính -5/12 + (-1)/4 là: A. -6/12 B. -8/12 C. 8/12 D. 6/12 2. Biết rằng -3/4 = x/5. Giá trị của x bằng: A. -20/3 B. -15/4 C. 2 D. -2 3. Giá trị của biểu thức M = (3 - 2,5) - [5 - (-1,5)] là: A. 4 B. 1 C. -6 D. -3 4. Cho một đường thẳng cắt hai...
Đọc tiếp

1. Kết quả của phép tính -5/12 + (-1)/4 là:

A. -6/12 B. -8/12 C. 8/12 D. 6/12

2. Biết rằng -3/4 = x/5. Giá trị của x bằng:

A. -20/3 B. -15/4 C. 2 D. -2

3. Giá trị của biểu thức M = (3 - 2,5) - [5 - (-1,5)] là:

A. 4 B. 1 C. -6 D. -3

4. Cho một đường thẳng cắt hai đường thẳng song song. Khi đó số cặp góc đồng vị bằng nhau được tạo thành là:

A. 1 B. 6 C. 8 D. 4

5. Cho hàm số y = f(x) = -2x + 1. Khẳng định nào sau đây là đúng:

A. f(-1) = 3 B. f(0) = 1 C. f(1/2) = 1 D. f(2) = 1/3

6. Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

7. Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

8. Tính chu vi của một tam giác biết 3 cạnh của nó lần lượt tỷ lệ với 7; 5; 3 và cạnh lớn nhất dài hơn cạnh bé nhất 12cm.

9. Ba nhà sản xuất góp vốn theo tỷ lệ là 4: 5 :6. Số tiền lãi được chia tỷ lệ với số đóng góp. Tính tiền lãi của mỗi đơn vị biết rằng tổng số tiền lãi của đơn vị thứ hai và thứ ba hơn tiền lãi của đơn vị thứ nhất là 8,4 triệu đồng.

10. So sánh 2 số: 2600 và 3400

1

Bài 8:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{7}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a-c}{7-3}=\dfrac{12}{4}=3\)

=>a=21; b=15; c=9

Chu vi là 21+15+9=45cm

Bài 10:

\(2^{600}=8^{200}< 9^{200}=3^{400}\)

Bài 7:

a: Xét ΔBAE và ΔBME có

BA=BM

góc ABE=góc MBE

BE chung

Do đó; ΔBAE=ΔBME

b: Ta có: ΔBAE=ΔBME

nên góc BAE=góc BME=90 độ

=>ME vuông góc với BC

c: góc MEC+góc C=90 độ

góc ABC+góc C=90 độ

Do đó: góc MEC=góc ABC

4 tháng 8 2017

1. a, | 2x - 3 | + x = 5

<=> | 2x - 3| = 5 - x

<=> \(\left[{}\begin{matrix}2x-3=5-x\\2x-3=-5+x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=8\Rightarrow x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\)

b, 3x - 2 +2| x + 3| = 0

Với x \(\ge1\) có:

3x - 2 + 2x + 6 = 0

<=> 5x = -4

<=> \(x=-\dfrac{4}{5}\)

Với x < 1 có:

-3x - 2 - 2x + 6 = 0

<=> -5x = -4

<=> x = \(\dfrac{4}{5}\) thử lại k thỏa mãn

Vậy có 1 gt x tm đề là x = -4/5

c, Tương tự b

Bài 2: gần tương tự bài 1

Bài 3:

a, Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)

đẳng thắc xảy ra khi \(0\le x\le8\)

Vậy A_min = 8 khi.....

b, Áp dụng bđt như ý a ta có:

\(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)

đẳng thức xảy ra khi \(2\le x\le5\)

Vậy...............

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

18 tháng 2 2021

Giải giúp mình với ạ Giá trị nhỏ nhất của biểu thức P=x+4/x với x >0 là A 8 B 3 C 4 D 2

=>X=4 thay vào nha

18 tháng 2 2021

Là sao chứ 

NV
10 tháng 5 2019

Câu 1:

\(P=4sin\frac{A+B}{2}cos\frac{A-B}{2}-2\left(2cos^2\frac{C}{2}-1\right)\)

\(P=4cos\frac{C}{2}cos\frac{A-B}{2}-4cos^2\frac{C}{2}+2\)

\(\Leftrightarrow4cos^2\frac{C}{2}-4cos\frac{C}{2}.cos\frac{A-B}{2}+P-2=0\)

Đặt \(x=cos\frac{C}{2}\)

\(\Rightarrow4x^2-4cos\frac{A-B}{2}.x+P-2=0\) (1)

Do góc C luôn tồn tại \(\Rightarrow\) phương trình (1) luôn có ít nhất 1 nghiệm

\(\Delta'=4cos^2\frac{A-B}{2}-4\left(P-2\right)\ge0\)

\(\Leftrightarrow4cos^2\frac{A-B}{2}+8\ge4P\Rightarrow P\le cos^2\frac{A-B}{2}+2\le3\)

\(\Rightarrow P_{max}=3\) khi \(\left\{{}\begin{matrix}A=B\\cos\frac{C}{2}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=B=30^0\\C=120^0\end{matrix}\right.\)

NV
10 tháng 5 2019

Câu 2: đường tròn tâm \(O\left(1;2\right)\) ; \(R=2\)

Do \(M\in d\Rightarrow M\left(a;a+7\right)\)

\(OM^2=\left(a-1\right)^2+\left(a+5\right)^2=2a^2+8a+26\)

\(\Rightarrow MA^2=MB^2=IM^2-R^2=\left(a-1\right)^2+\left(a+5\right)^2-4=2a^2+8a+22\)

Ta có \(\Delta OAM=\Delta OBM\Rightarrow S_{OAMB}=2S_{OAM}=OA.AM=R.AM\)

Mặt khác do \(OM\perp AB\) (tính chất đường tròn)

\(\Rightarrow S_{OAMB}=AB.OM\)

\(\Rightarrow AB.OM=R.AM\Rightarrow AB^2=\frac{R^2.AM^2}{OM^2}=\frac{4\left(2a^2+8a+22\right)}{2a^2+8a+26}=\frac{4\left(a^2+4a+11\right)}{a^2+4a+13}\)

\(\Rightarrow AB^2=4-\frac{8}{a^2+4a+13}=4-\frac{8}{\left(a+2\right)^2+9}\ge4-\frac{8}{9}=\frac{28}{9}\)

\(\Rightarrow AB_{min}=\frac{2\sqrt{7}}{3}\) khi \(a=-2\Rightarrow b=5\Rightarrow a+b=3\)