Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M thuộc d nên: \(a-2b-2=0\Rightarrow2b=a-2\)
\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-a;1-b\right)\\\overrightarrow{MB}=\left(3-a;4-b\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(3-2a;5-2b\right)=\left(3-2a;9-2a\right)\)
Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(3-2a\right)^2+\left(9-2a\right)^2}=\sqrt{8a^2-48a+90}=\sqrt{8\left(a-3\right)^2+18}\ge\sqrt{18}\)
Dấu "=" xảy ra khi \(a-3=0\Leftrightarrow a=3\Rightarrow b=\dfrac{1}{2}\)
a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M
Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)
Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\) \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)
Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)
b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có
\(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)
suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)
Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình
\(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)
Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)
Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)
\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)
\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)
\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
Tọa độ điểm A, B là nghiệm của hệ phương trình :
\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)
\(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)
Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC
Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)
\(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)
Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)
Câu 1:
\(P=4sin\frac{A+B}{2}cos\frac{A-B}{2}-2\left(2cos^2\frac{C}{2}-1\right)\)
\(P=4cos\frac{C}{2}cos\frac{A-B}{2}-4cos^2\frac{C}{2}+2\)
\(\Leftrightarrow4cos^2\frac{C}{2}-4cos\frac{C}{2}.cos\frac{A-B}{2}+P-2=0\)
Đặt \(x=cos\frac{C}{2}\)
\(\Rightarrow4x^2-4cos\frac{A-B}{2}.x+P-2=0\) (1)
Do góc C luôn tồn tại \(\Rightarrow\) phương trình (1) luôn có ít nhất 1 nghiệm
\(\Delta'=4cos^2\frac{A-B}{2}-4\left(P-2\right)\ge0\)
\(\Leftrightarrow4cos^2\frac{A-B}{2}+8\ge4P\Rightarrow P\le cos^2\frac{A-B}{2}+2\le3\)
\(\Rightarrow P_{max}=3\) khi \(\left\{{}\begin{matrix}A=B\\cos\frac{C}{2}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=B=30^0\\C=120^0\end{matrix}\right.\)
Câu 2: đường tròn tâm \(O\left(1;2\right)\) ; \(R=2\)
Do \(M\in d\Rightarrow M\left(a;a+7\right)\)
\(OM^2=\left(a-1\right)^2+\left(a+5\right)^2=2a^2+8a+26\)
\(\Rightarrow MA^2=MB^2=IM^2-R^2=\left(a-1\right)^2+\left(a+5\right)^2-4=2a^2+8a+22\)
Ta có \(\Delta OAM=\Delta OBM\Rightarrow S_{OAMB}=2S_{OAM}=OA.AM=R.AM\)
Mặt khác do \(OM\perp AB\) (tính chất đường tròn)
\(\Rightarrow S_{OAMB}=AB.OM\)
\(\Rightarrow AB.OM=R.AM\Rightarrow AB^2=\frac{R^2.AM^2}{OM^2}=\frac{4\left(2a^2+8a+22\right)}{2a^2+8a+26}=\frac{4\left(a^2+4a+11\right)}{a^2+4a+13}\)
\(\Rightarrow AB^2=4-\frac{8}{a^2+4a+13}=4-\frac{8}{\left(a+2\right)^2+9}\ge4-\frac{8}{9}=\frac{28}{9}\)
\(\Rightarrow AB_{min}=\frac{2\sqrt{7}}{3}\) khi \(a=-2\Rightarrow b=5\Rightarrow a+b=3\)