K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

Theo bài ra , ta có :

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(\Leftrightarrow A=y^2+2xy+x^2-2y-2x+1+x^2-4x+4+5\)

\(\Leftrightarrow A=\left(y+x\right)^2-2\left(x+y\right)+1+\left(x-2\right)^2+5\)

\(\Leftrightarrow A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\)

\(\left(y+x-1\right)^2\ge0\forall y,x\)

\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\forall x,y\)

\(\Rightarrow min_A=5\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{\begin{matrix}y+x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y+x=1\\x=2\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của A = 5 khi và chỉ khi y = -1 và x =2

Chúc bạn học tốt =))ok

16 tháng 2 2017

= 5 nha từ từ r mik làm

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

16 tháng 3 2017

\(A=2x^2+y^2-2xy+4x+2y+5\)

\(A=\left(x^2+6x+9\right)+\left(y^2-2xy-2y+x^2-2x+1\right)-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x^2-2x+1\right)\right]-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x-1\right)^2\right]-5\)

\(A=\left(x+3\right)^2+\left(y-x+1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=-3 và y=-4

16 tháng 3 2017

\(A=2x^2+y^2-2xy+4x+2y+5\)

=> \(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+6x+4\)

=> \(A=\left(y-x+1\right)^2-\left(x^2-2.x.3+9\right)+13\)

=> \(A=\left(y-x+1\right)^2-\left(x-3\right)^2+13\)

Có \(\left(y-x+1\right)^2\ge0\)

\(\left(x-3\right)^2\ge0\)

=> \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\ge13\)

=> \(A\ge13\)

Vậy Amin = 13 <=> \(\hept{\begin{cases}y-x+1=0\\x-3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

9 tháng 10 2016

Ta có :

\(x^2+y^2+2x+2y+2xy+5\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\)

Đặt x+y=a

Biểu thức trở thành :

\(a^2+2a+5\)

\(=a^2+2a+1+4\)

\(=\left(a+1\right)^2+4\)

Vì \(\left(a+1\right)^2\ge0\)

\(\Rightarrow\left(a+1\right)^2+4\ge4\)

Dấu " = " xảy ra khi a + 1 = 0

<=> x+y+1=0

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0

9 tháng 10 2016

 x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN=4 khi (x;y)={(7;1)} 

28 tháng 10 2020

Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015

= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 +  2014

= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)

Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3

28 tháng 10 2020

\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)

\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)

hay \(A\ge2014\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)

7 tháng 10 2018

\(N=2x^2+y^2+2xy-2x-2y+2011\)

\(=\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1+x^2+2010\)

\(=\left(x+y-1\right)^2+x^2+2010\ge2010\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

Vậy Min N là : \(2010\Leftrightarrow x=0;y=1\)

\(P=2x\left(1-x\right)=2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Max P là : \(\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(Q=-x^2-4y^2+4x+2y-25\)

\(=-\left(x^2-4x+4\right)-\left(4y^2-2y+\dfrac{1}{4}\right)-\dfrac{83}{4}\)

\(=-\left(x-2\right)^2-\left(2y-\dfrac{1}{2}\right)^2-\dfrac{83}{4}\le\dfrac{83}{4}\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{4}\end{matrix}\right.\)

Vậy Max Q là : \(\dfrac{83}{4}\Leftrightarrow x=2;y=\dfrac{1}{4}\)

7 tháng 10 2018

Mik đánh vội nên nhầm và max là : \(-\dfrac{83}{4}\)

11 tháng 11 2015

\(A=\left(y^2+2y\left(x+1\right)+\left(x+1^2\right)\right)+2x^2+6x+2015-\left(x+1\right)^2\)

\(=\left(y+x+1\right)^2+x^2+4x+4+2010\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2010\ge0+0+2010=2010\)

\(Amin=2010\Leftrightarrow\int^{x+2=0}_{x+y+1=0}\Rightarrow\int^{x=-2}_{y=1}\)