K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

A. 1/4

B. 0

C. -1/4

D. -1/2

30 tháng 11 2021

\(P=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ P_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

30 tháng 7 2016

Điều kiện xác định của A : \(x\ge1\). Nhận xét : A > 0

Xét :  \(A^2=2x+7+2\sqrt{\left(x+8\right)\left(x-1\right)}\)

Vì \(x\ge1\)nên \(2x+7\ge9\) , \(2\sqrt{\left(x+8\right)\left(x-1\right)}\ge0\)

Suy ra \(A^2\ge9\Rightarrow A\ge3\)(vì A > 0)

Dấu "=" xảy ra khi x = 1

Vậy Min A = 3 tại x = 1

21 tháng 5 2019

đề bài là gì hả cậu :<

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Bạn kiểm tra lại xem đã viết đúng đề chưa vậy?

31 tháng 1 2016

\(2P=2x^2+2y^2+2xy-6\left(x+y\right)+6\)

\(2P=\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6y+9\right)-12\)

\(2P=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2-12\)

VÌ \(\left(x-y\right)^2\ge0;\left(x-3\right)^2\ge0;\left(y-3\right)^2\ge0\)

==> GTNN của 2P=-12 

==> GTNN của P=-12/2=-6 <=> x=y=3

31 tháng 1 2016

em học lớp 6 khó quá

10 tháng 8 2020

a) Thay \(x=25\)vào B: 

=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)

b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé

10 tháng 8 2020

bạn giúp mình đc ko

6 tháng 1 2021

Từ \(a+b\ge1=>b\ge1-a>0\) ta có:

A = \(\dfrac{8a^2+b}{4a}+b^2\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)

=\(\dfrac{8a^2-a+1+4a^3-8a^2+4a}{4a}=\dfrac{4a^3-4a^2+a+4a^2-4a+1+6a}{4a}\)

\(\dfrac{a\left(2a-1\right)^2+\left(2a-1\right)^2}{4a}+\dfrac{3}{2}=\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}+\dfrac{3}{2}\left(1\right)\)

Vì với a>0 thì\(\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}\ge0\)

Dấu = xảy ra khi a=1/2

Nên từ (1) => A\(\ge0+\dfrac{3}{2}\) hay A\(\ge\dfrac{3}{2}\)

Vậy GTNN của A=3/2 khi a=b=1/2

 

6 tháng 1 2021

A = \(\dfrac{8a^2+b}{4a}+b^2\)

Ta có: a + b \(\ge\) 1 \(\Leftrightarrow\) b \(\ge\) 1 - a

\(\Rightarrow\) A \(\ge\) \(\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)

\(\Leftrightarrow\) A \(\ge\) 2a + \(\dfrac{1}{4a}\) - \(\dfrac{1}{4}\) + 1 - 2a + a2

\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{4a}\) + \(\dfrac{3}{4}\)

\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\)

Áp dụng BĐT Cô-si cho 3 số dương a2\(\dfrac{1}{8a}\)\(\dfrac{1}{8a}\)

a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) \(\ge\) 3\(\sqrt[3]{\dfrac{a^2}{64a^2}}\) = 3\(\sqrt[3]{64}\) = 3.4 = 12

\(\Leftrightarrow\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) 12 + \(\dfrac{3}{4}\) = \(\dfrac{51}{4}\)

Hay A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{51}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\) a2 = \(\dfrac{1}{8a}\) \(\Leftrightarrow\) 8a3 = 1 \(\Leftrightarrow\) a\(\dfrac{1}{8}\) \(\Leftrightarrow\) a = \(\dfrac{1}{2}\)

và b = 1 - a \(\Leftrightarrow\) b = 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)

Vậy MinA = \(\dfrac{51}{4}\) \(\Leftrightarrow\) a = b = \(\dfrac{1}{2}\)

 Chúc bn học tốt! (ko chắc lắm đâu)