Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=25\)vào B:
=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)
b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé
bản rút gọn biểu thức trên A =\(x-\sqrt{x}+2\)
=\(x-2\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
= \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\)
vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)với mọi x
<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)voi mọi x
<=> A \(\ge\)7/4
=> min A = 7/4
dau = xay ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Khi \(x=1,44\): \(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\))
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)
\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)
Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn)