K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

ta có:6-|x+1|  < 6

=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)

vậy....

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

2 tháng 11 2016

GTNN là -2,5 khi x = 2/5 và y = -1/2

6 tháng 11 2016

Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)

\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)

\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)

Vậy GTNN của biểu thức trên là -2,5

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

1) Tìm GTNN

a) Ta có: \(\left|\frac{1}{7}-x\right|\ge0\forall x\)

\(\Leftrightarrow3\cdot\left|\frac{1}{7}-x\right|\ge0\forall x\)

\(\Leftrightarrow3\cdot\left|\frac{1}{7}-x\right|+6\ge6\forall x\)

Dấu '=' xảy ra khi \(\frac{1}{7}-x=0\)

hay \(x=\frac{1}{7}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=6+3\left|\frac{1}{7}-x\right|\) là 6 khi \(x=\frac{1}{7}\)

b) Ta có: \(\left|x-\frac{4}{7}\right|\ge0\forall x\)

\(\Leftrightarrow\frac{1}{2}\cdot\left|x-\frac{4}{7}\right|\ge0\forall x\)

\(\Leftrightarrow\frac{1}{2}\cdot\left|x-\frac{4}{7}\right|-5\ge-5\forall x\)

Dấu '=' xảy ra khi \(x-\frac{4}{7}=0\)

hay \(x=\frac{4}{7}\)

Vậy: Gia trị nhỏ nhất của biểu thức \(\frac{1}{2}\left|x-\frac{4}{7}\right|-5\) là -5 khi \(x=\frac{4}{7}\)

Bài 2:

Ta có: \(A=\left|x-8\right|+\left|x-4\right|\)

\(=\left|x-8\right|+\left|4-x\right|\ge\left|x-8+4-x\right|=\left|-4\right|=4\)

Dấu '=' xảy ra khi \(\left(x-8\right)\left(4-x\right)\ge0\)

Trường hợp 1: (x-8)(4-x)>0

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-8>0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-8< 0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>8\\-x>-4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 8\\-x< -4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>8\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 8\\x>4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow4< x< 8\)

Trường hợp 2: (x-8)(4-x)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=4\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left|x-8\right|+\left|x-4\right|\) là 4 khi \(4\le x\le8\)

30 tháng 12 2016

ta có : \(\frac{1}{2}\left(X-\frac{1}{2}\right)^2\ge0\)

giá trị tuyệt đối của 2X-1\(\ge0\)

\(\Rightarrow\)\(\frac{1}{2}\left(X-\frac{1}{2}\right)^2+\left(giátrịtuyệtđối\right)2X-1-\frac{3}{2}\ge-\frac{3}{2}\)

vậy minB là \(\frac{-3}{2}\)

khi X=\(\frac{1}{2}\)