Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:6-|x+1| < 6
=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)
vậy....
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)
Vậy GTNN của biểu thức trên là -2,5
1) Tìm GTNN
a) Ta có: \(\left|\frac{1}{7}-x\right|\ge0\forall x\)
\(\Leftrightarrow3\cdot\left|\frac{1}{7}-x\right|\ge0\forall x\)
\(\Leftrightarrow3\cdot\left|\frac{1}{7}-x\right|+6\ge6\forall x\)
Dấu '=' xảy ra khi \(\frac{1}{7}-x=0\)
hay \(x=\frac{1}{7}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=6+3\left|\frac{1}{7}-x\right|\) là 6 khi \(x=\frac{1}{7}\)
b) Ta có: \(\left|x-\frac{4}{7}\right|\ge0\forall x\)
\(\Leftrightarrow\frac{1}{2}\cdot\left|x-\frac{4}{7}\right|\ge0\forall x\)
\(\Leftrightarrow\frac{1}{2}\cdot\left|x-\frac{4}{7}\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi \(x-\frac{4}{7}=0\)
hay \(x=\frac{4}{7}\)
Vậy: Gia trị nhỏ nhất của biểu thức \(\frac{1}{2}\left|x-\frac{4}{7}\right|-5\) là -5 khi \(x=\frac{4}{7}\)
Bài 2:
Ta có: \(A=\left|x-8\right|+\left|x-4\right|\)
\(=\left|x-8\right|+\left|4-x\right|\ge\left|x-8+4-x\right|=\left|-4\right|=4\)
Dấu '=' xảy ra khi \(\left(x-8\right)\left(4-x\right)\ge0\)
Trường hợp 1: (x-8)(4-x)>0
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-8>0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-8< 0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>8\\-x>-4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 8\\-x< -4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>8\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 8\\x>4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow4< x< 8\)
Trường hợp 2: (x-8)(4-x)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=4\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left|x-8\right|+\left|x-4\right|\) là 4 khi \(4\le x\le8\)