Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
Ta có :
\(-\left|3x-\frac{7}{6}\right|\le0\)
\(\Rightarrow B=\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}\)
Vậy GTLN của B là \(\frac{5}{2}\) <=> \(3x-\frac{7}{6}=0\) <=> x = \(\frac{7}{18}\)
\(\left|3x-\frac{7}{6}\right|\ge0=>\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}=2,5=>B_{max}=2,5<=>3x-\frac{7}{6}=0=>x=\frac{7}{18}\)