\(B=\frac{5}{2}-\left|3x-\frac{7}{6}\right|\) là ...........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Ta có :

\(-\left|3x-\frac{7}{6}\right|\le0\)

\(\Rightarrow B=\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}\)

Vậy GTLN của B là \(\frac{5}{2}\) <=> \(3x-\frac{7}{6}=0\) <=> x = \(\frac{7}{18}\)

28 tháng 11 2015

\(\left|3x-\frac{7}{6}\right|\ge0=>\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}=2,5=>B_{max}=2,5<=>3x-\frac{7}{6}=0=>x=\frac{7}{18}\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

18 tháng 7 2019

a, với mọi x.Có:

|x+\(\frac{5}{6}\)> 0

=> 2-|x+\(\frac{5}{6}\) | > 2

=> A                  > 2

dấu = xảy ra <=> |x+5/6|=0

                     <=> x+5/6=0

                     <=> x=-5/6

vậy GTLN A=2 khi x=-5/6

18 tháng 7 2019

tương tự 

GTLN B=5 khi x=2/3

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

17 tháng 10 2020

a) \(A=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\)

TH1: Nếu \(x-\frac{2}{3}\ge0\Rightarrow x\ge\frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=x-\frac{2}{3}\)

\(A=x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\left(1\right)\)

TH2: Nếu \(x-\frac{2}{3}< 0\Rightarrow x< \frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=-x+\frac{2}{3}\)

\(A=x+\frac{1}{2}+x-\frac{2}{3}=2x-\frac{1}{6}\)

Vì \(x< \frac{2}{3}\Rightarrow2x-\frac{1}{6}< \frac{7}{6}\left(2\right)\)

Từ (1) và (2) => GTLN của A là \(\frac{7}{6}\)khi \(x\ge\frac{2}{3}\)