Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|0,6-4x|=4,2
<=> 0,6-4x=4,2 hoặc 0,6-4x=-4,2
<=>4x=-3,6 hoặc 4x=4,8
<=>x=-0,9 hoặc x=1,2
mà x>0 nên x=1,2
Ta co :
|0,6-4x|=3,2
=>|0,6-4x|=+-3,2
TH1:
0,6-4x=3,2
4x = 0,6-3,2=-2,6
x = -2,6:4=-0,65
TH2:
0,6-4x=-3,2
4x = 0,6-(-3,2)=3,8
x = 3,8:4=0,95
Ma de bai cho gia tri x<0
Vay suy ra x=-0,95 ( thoa man de bai)
lik e nhe
Ta có: \(3mx>x+2\Rightarrow\left(3m-1\right)x>2\left(1\right)\)
Với \(3m-1=0\Rightarrow0>2\): Vô lý nên \(3m-1\ne0.\)
Với \(3m-1>0\Leftrightarrow\Rightarrow m>\frac{1}{3}\Rightarrow x>\frac{2}{3m-1}.\)
Để (1) đúng với mọi x > 1 suy ra\(1\ge\frac{2}{3m-1}\Rightarrow\frac{2}{3m-1}-1\le0\Rightarrow\frac{3-3m}{3m-1}\le0\)
Do 3m - 1 > 0 nên \(3-3m\le0\Rightarrow m\ge1.\)
Kết hợp điều kiện suy ra \(m\ge1.\)
Với \(3m-1< 0\Leftrightarrow\Rightarrow m< \frac{1}{3}\Rightarrow x< \frac{2}{3m-1}.\)
Khi đó không xảy ra trường hợp \(\forall x>1\) thì \(x< \frac{2}{3m-1}.\)
Vậy trường hợp này loại.
Kết luận \(m\ge1.\)
=> 2x = 6
x = 6:2
x = 3
Mà 3 > 0 => không có giá trị x âm để 2x-0.4= 3.2
Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)
Khi đó A = 2019 - 1/5 + 5 = 2023,8
\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)
Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)
\(\Rightarrow\left|x-0,678\right|=1,678\\ \Rightarrow\left[{}\begin{matrix}x=1,678+0,678=2,356\\x=-1,678+0,678=-1\end{matrix}\right.\)