Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy:\(-\left|x-3\right|\le0\)
\(\Rightarrow-\left|x-3\right|+12\le0+12=12\)
\(\Rightarrow P\le12\)
Dấu = khi x=3
Vậy x=3 thì P đạt GTLN
b)2x=8y+1 <=>2x=(23)y+1
<=>2x=23y+1
<=>x=3y+1 (1)
9y=3x-9 <=>(32)y=3x-9
<=>32y=3x-9
<=>2y=x-9 (*)
Thay (1) vào (*) có:
2y=3y+1-9 <=>2y=3y-8
<=>y=8 =>x=25
Vậy x+y=8+25=33
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
x9+y9=(x3+y3)(x6-x3y3+y6)
x3+y3=10,1003
=>x6+y6+2x3y3=10,10032.
Mà x6+y6=200,2006
Đến đây bạn tự thay số vào tính là ra nhé
cho biết x+y+z=10 và (x+6)3+(y-7)3+(z-9)3 = 0
Tính giá trị biểu thức M= (x+6)2019+(y-7)2019+(z-9)2019
Đặt \(x+6=a;y-7=b;z-9=c\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)
Bạn hiểu chưa :))
Đặt x+6=a, y-7=b, z-9=c
Vì x+y+z=10 nên a+b+c=0
Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)
Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):
\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)
Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)
Vậy M = a2019+b2019+c2019=0
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)
\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)
\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)
=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)
\(\Leftrightarrow C=3\left(81-18\right)=189\)
\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)
\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)
a )
\(A=xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
\(\Leftrightarrow A=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)
\(\Leftrightarrow A=3\)
\(\Leftrightarrow A\)ko phụ thuộc vào g/t của biến
b )
\(B=\left(x-9\right)\left(x-9\right)+\left(2x+1\right)^2-\left(5x-4\right)\left(x-2\right)\)
\(\Leftrightarrow B=x^2-2.x.9+9^2+\left(2x\right)^2+2.2x.1+1-\left[5x^2-4x-10x+8\right]\)
\(\Leftrightarrow B=x^2-18x+81+4x^2+4x+1-5x^2+4x+10x-8\)
\(\Leftrightarrow B=\left(x^2+4x^2-5x^2\right)+\left(-18x+4x+4x+10x\right)+\left(81-8+1\right)\)
\(\Leftrightarrow B=74\)
\(\Leftrightarrow B\)ko phụ thuộc vào g/t của biến
* 2x=8y+1
2x=83(y+1)(1)
=>x=3y+3
* 9y=3x-9
32y=3x-9
=>2y=x-9(2)
Từ 1,2 =>x-(x-9)=3y+3-2y
9=3+y
=>y=6 =>x=21
=>x+9=30
................................
x+9=30