K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)

\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)

\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)

=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)

\(\Leftrightarrow C=3\left(81-18\right)=189\)

21 tháng 7 2016

\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)

\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)

24 tháng 9 2020

Ta có x3 + y3

= (x + y)(x2 - xy + y2)

= (x + y)(x2 + 2xy + y2) - 3xy(x  + y)

= (x + y)3 - 6xy 

= 23 - 6xy

= 8 - 6xy

Lại có x + y = 2

=> (x + y)2 = 4

=> x2 + y2 + 2xy = 4

=> 2xy = -6

=> xy = -3

Khi đó x3 - y3 = 8 + 6.3 = 26

b) a + b = 7

=> a = 7 - b

Khi đó ab = 12

<=> (7 - b).b = 12

=> 7b - b2 = 12

=> 7b - b2 - 12 = 0

=> -(b2 - 7b + 12) = 0

=> b2 - 4b - 3b + 12 = 0

=> b(b - 4) - 3(b - 4) = 0

=> (b - 3)(b - 4) = 0

=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)

Khi b = 3 => a = 4

Khi b = 4 => a = 3

+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1

+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1

c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)

                         = (a - b)(a2 - 2ab + b2) + 3ab(a - b)

                         = (a - b)3 + 3ab(a - b)

                          = 27 + 9ab

Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

Khi đó C = 27 + 9.6.3 = 27 + 162 = 189

25 tháng 9 2018

a) Ta có:

\(x+y=2\)

\(\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow x^2+y^2+2xy=4\)

\(\Rightarrow10+2xy=4\) ( Vì x2 + y2 = 10 )

\(\Rightarrow2xy=4-10=-6\)

\(\Rightarrow xy=-3\)

\(A=x^3+y^3\)

\(A=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay x + y = 2 ; xy = -3 ; x2 + y2 = 10 vào A

\(A=2\left[10-\left(-3\right)\right]\)

\(A=2.13=26\)

25 tháng 9 2018

d) \(D=x^2+2xy+y^2-4x-4y+1\)

\(D=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(D=\left(x+y\right)\left(x+y-4\right)+1\)

Thay x + y = 3 vào D

\(D=3\left(3-4\right)+1\)

\(D=-2\)

25 tháng 7 2019

#)Giải :

a)\(A=x^2+2xy+y^2-4x-4y+1=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào biểu thức, ta được : \(A=3^2-4.3+1=-2\)

25 tháng 7 2019

hãy giải hết giúp mình vs

25 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-12+1=-2\)

\(B=x^2-2xy+y^2-5x+5y+6=\left(x-y\right)^2-5\left(x-y\right)+6=7^2-5.7+6=20\)

25 tháng 7 2019

a)Ta có

A=\(x^2+2xy+y^2-4x-4y+1\)

=>A=\(\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=3 nên

A=\(3^2-4\cdot3+1\)

A=-2

b)Ta có:

B=\(x^2-2xy+y^2-5x+5y+6\)

B=\(\left(x-y\right)^2-5\left(x-y\right)+6\)

Mà x-y=7 nên

B=\(7^2-5\cdot7+6\)

B=20

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

22 tháng 9 2017

Có (a+b+c)2 = 3(ab+bc+ac)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\)\(=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a=b=c\)