Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ápdụng bdt bunhia dạng phân thức ta có
M=\(\frac{1}{1+x}\)+\(\frac{1}{1+y}\)≥\(\frac{\left(1+1\right)^2}{1+x+1+y}\)=\(\frac{4}{2+x+y}\)
áp dụng bđt bunhia dạng đa thức ta có
(x+y)2≤(1+1)(x2+y2)=2(x2+y2)≤2.2=4
⇒x+y≤2
⇒M≥\(\frac{4}{2+2}\)=1 vậy GTNN M =1 khi x=y=1
\(S=4\left(x^2+\frac{1}{x}+\frac{1}{x}\right)+y^2+\frac{27}{y}+\frac{27}{y}\)
\(S\ge12\sqrt[3]{\frac{x^2}{x^2}}+3\sqrt[3]{\frac{27^2.y^2}{y^2}}=39\)
\(S_{min}=39\) khi \(\left\{{}\begin{matrix}x^2=\frac{1}{x}\\y^2=\frac{27}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow T=5\)
Do \(x=0\) không phải nghiệm
\(x^2+3x+1=0\Leftrightarrow x+3+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=-3\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x^2+\frac{1}{x^2}=7\)
Đặt \(x_n=x^n+\frac{1}{x^n}\Rightarrow x_1=-3;x_2=7\)
\(x_1x_n=\left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}}=x_{n+1}+x_{n-1}\)
\(\Rightarrow x_{n+1}=x_1x_n-x_{n-1}=-3x_n-x_{n-1}\)
Cho \(n=2\Rightarrow x_3=x^3+\frac{1}{x^3}=-3.x_2-x_1=-18\)
\(n=3\Rightarrow x_4=x^4+\frac{1}{x^4}=-3x_3-x_2=47\)
\(n=4\Rightarrow x_5=x^5+\frac{1}{x^5}=-3x_4-x_3=-123\)
\(n=5\Rightarrow x_6=x^6+\frac{1}{x^6}=-3x_5-x_4=322\)
Thay vào và tính, kết quả rất to
Ta có:
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)
\(P=\left(-\sqrt{x}\right)\left(\sqrt{x}-1\right)\)
\(P=\sqrt{x}-x\)
b) Để \(P>0\) thì \(\sqrt{x}-x>0\)
- \(\sqrt{x}-x>0\)
\(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)
Suy ra: TH1: \(\sqrt{x}< 0\) và \(1-\sqrt{x}< 0\) (Loại) vì \(\sqrt{x}\ge0\)
TH2:\(\sqrt{x}>0\) và \(1-\sqrt{x}>0\) (Nhận)
Ta có \(\sqrt{x}>0\) và \(1-\sqrt{x}>0\) để \(P>0\)
- \(\sqrt{x}>0\) \(\Rightarrow x>0\)
- \(1-\sqrt{x}>0\) \(\Rightarrow\sqrt{x}< 1\) \(\Rightarrow x< 1\)
Vậy để \(P>0\) thì \(0< x< 1\)
c)\(P=\sqrt{x}-x\)
\(P=-\left(x-\sqrt{x}\right)\)
\(P=-\left(\left(\sqrt{x}\right)^2-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)
\(P=-\left(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\right)\)
\(P=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)
Nên \(-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\) \(\Rightarrow x=\frac{1}{4}\)
Vậy GTLN của \(P\) là \(\frac{1}{4}\) khi \(x=\frac{1}{4}\)
Bài 1:
ĐKXĐ: \(x\geq 0; x\neq 4\)
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}=\frac{x}{x-4}+\frac{\sqrt{x}+2+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\)
\(=\frac{x}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{x+2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-2)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b)
Khi \(|x|=25\Rightarrow \left[\begin{matrix} x=25\\ x=-25\end{matrix}\right.\). Mà $x\geq 0$ nên $x=25$
\(P=\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{3}\)
Bài 2:
ĐKXĐ: \(x\geq 0; x\neq 1\)
a)
\(B=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)
Khi \((x^2+1)(2x-8)=0\Rightarrow \left[\begin{matrix} x^2+1=0\\ 2x-8=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x^2=-1(\text{vô lý})\\ x=4(\text{thỏa mãn})\end{matrix}\right.\)
Với $x=4$:
\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
\(x^2-4x+1=0\Leftrightarrow\left(x^2-4x+4\right)-3=0\Leftrightarrow\left(x-2\right)^2-3=0\Leftrightarrow\left(x-2\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{3}\\x-2=\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)
rồi bạn thay x ào A mà tính
Biết : x2 - 4x + 1 = 0 Tính giá trị \(A=\frac{x^2-x+1}{x}\)
Ta biến đổi : \(A=\frac{x^2-x+1}{x}=\frac{\left(x^2-4x+1\right)+3x}{x}=\frac{0+3x}{x}=3\)