Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết quả 5 lần gieo mà không có lần nào xuất hiện mặt sấp là 1
Vậy n(B) = 32 - 1 = 31.
Chọn A.
Kết quả của 5 lần gieo mà mặt N xuất hiện đúng một lần:
Kết quả của 5 lần gieo mà mặt N xuất hiện đúng hai lần:
Số kết quả của 5 lần gieo mà số lần mặt S xuất hiện nhiều hơn số lần mặt N là:
Chọn C
Ta có: \(A = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;1} \right);\left( {3;3} \right);\left( {3;5} \right);\left( {5;1} \right);\left( {5;3} \right);\left( {5;5} \right)} \right\}\).
\(B\) là biến cố “Tổng số chấm xuất hiện là số lẻ”
\(\begin{array}{l} \Rightarrow B = \left\{ {\left( {1;2} \right);\left( {1;4} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;3} \right);\left( {2;5} \right);\left( {3;2} \right);\left( {3;4} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;3} \right);\left( {4;5} \right);} \right.\\\left. {\left( {5;2} \right);\left( {5;4} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;3} \right);\left( {6;5} \right)} \right\}\end{array}\)
Vậy hai biến cố \(A\) và \(B\) xung khắc.
Chọn B.
b. Biến cố C: “ Có ít nhất hai đồng tiền xuất hiện mặt ngửa” tức là có thể có hai hoặc ba đồng tiền xuất hiện mặt ngửa. Vì vậy chọn phương án B
Kết quả của 5 lần gieo là dãy abcde với a;b;c;d;e nhận một trong hai giá trị N hoặc S. Do đó số phần tử của không gian mẫu: n(Ω) = 2.2.2.2.2 = 32.
Lần đầu tiên xuất hiện mặt ngửa nên a chỉ nhận giá trị S; b;c;d;e nhận S hoặc N nên n(A) = 1.2.2.2.2 = 16
Chọn A.
a) Không gian mẫu có dạng
Ω = {SSS, SSN, SNS, NSS, SNN, NSN, NNS, NNN}
b)
A = {SSS, SNS, SSN, SNN};
B = {SSS, NNN};
C = {SSN, SNS, NSS};
D = {NN N } = Ω \ {NNN}.
THAM KHẢO:
Hai biến cố A và B không thể đồng thời cùng xảy ra.