Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.(-2013).2014+1007.26
=(-2013).2.1007+1007.26
=(-4026).1007+1007.26
=1007.(-4026+26)
=1007.(-4000)
=-4028000
b.(1313/1414 + 10/160) - (130/140 - 1515/1616)
=(13/14+1/16)-(13/140-(1/16+15/16)
=13/14+1/16-13/14+15/16
=(13/14+13/14)-(1/16+15/16)
=26/14-16/16
=26/14-1
=26/14-14/14
=12/14
=6/7
ấn đúng cho mình nhé
\(\left(\frac{1313}{1414}+\frac{10}{160}\right)-\left(\frac{130}{140}-\frac{1515}{1616}\right)\)
\(=\left(\frac{13}{14}+\frac{1}{16}\right)-\left(\frac{13}{14}-\frac{15}{16}\right)\)
\(=\frac{13}{14}+\frac{1}{16}-\frac{13}{14}+\frac{15}{16}\)
\(=\left(\frac{13}{14}-\frac{13}{14}\right)+\left(\frac{1}{16}+\frac{15}{16}\right)\)
\(=0+1\)
\(=1\)
Có (\(\frac{1313}{1414}\)+\(\frac{10}{160}\)) - (\(\frac{130}{140}\)-\(\frac{1515}{1616}\))
=\(\frac{13}{14}\)+\(\frac{1}{16}\)-\(\frac{13}{14}\)+\(\frac{15}{16}\)
=(\(\frac{13}{14}-\frac{13}{14}\)) + (\(\frac{1}{16}+\frac{15}{16}\))
=0+1=1
So sánh 6262 / 7878 và 2424 / 3636
Vì 6262/7878 > 2424/3636
Nên 1414 + 1515 + 1616 + 1717 / 1818 + 1919 + 2020 + 2121 > 2424/3636
\(\frac{1414+1515+1616+1717+1818+1919}{2020+2121+2222+2323+2424+2525}\)
\(=\frac{101\left(14+15+16+17+18+19\right)}{101\left(20+21+22+23+24+25\right)}\)
\(=\frac{\left(19+14\right)\left(19-14+1\right):2}{\left(25+20\right)\left(25-20+1\right):2}\)
=\(\frac{33.6:2}{45.6:2}=\frac{33}{45}=\frac{11}{15}\)
1414+1515+1616+1717+1818+1919/2020+2021+2222+2323+2424+2525
=14.101+15.101+16.101+17.101+18.101+19.101/20.101+21.101+22.101+23.101+24.101+25.101
=14+15+16+17+18+19/20+21+22+23+24+25
=99/135
=11/15
1414+1515+1616+1717+1818+1919/2020+2121+2222+2323+2424+2525
=14.101+15.101+16.101+17.101+18.101+19.101/20.101+21.101+22.101+23.101+24.101+25.101
=14+15+16+17+18+19/20+21+22+23+24+25
=99/135
=11/15
Lúc nãy, cô còn dạy học nên giờ cô mới giảng cho em được nhé.
B = (1 - \(\dfrac{1}{2}\))\(\times\)(1 - \(\dfrac{1}{3}\))\(\times\)(1 - \(\dfrac{1}{4}\))\(\times\)(1-\(\dfrac{1}{5}\))\(\times\)...\(\times\)(1- \(\dfrac{1}{2003}\))\(\times\)(1-\(\dfrac{1}{2004}\))
B = \(\dfrac{2-1}{2}\)\(\times\)\(\dfrac{3-1}{3}\)\(\times\)\(\dfrac{4-1}{4}\)\(\times\)\(\dfrac{5-1}{5}\)\(\times\)...\(\times\)(\(\dfrac{2003-1}{2003}\))\(\times\)(\(\dfrac{2004-1}{2004}\))
B = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)\(\times\)\(\dfrac{3}{4}\)\(\times\)\(\dfrac{4}{5}\)\(\times\)...\(\times\)\(\dfrac{2002}{2003}\)\(\times\)\(\dfrac{2003}{2004}\)
B = \(\dfrac{2\times3\times4\times...\times2003}{2\times3\times4\times...\times2003}\)\(\times\) \(\dfrac{1}{2004}\)
B = \(\dfrac{1}{2004}\)
G = \(\left(\dfrac{1313}{1414}+\dfrac{10}{160}\right)-\left(\dfrac{130}{140}-\dfrac{1515}{1616}\right)\)
= \(\left(\dfrac{13}{14}+\dfrac{1}{16}\right)-\left(\dfrac{13}{14}-\dfrac{15}{16}\right)\)
= \(\dfrac{13}{14}+\dfrac{1}{16}-\dfrac{13}{14}+\dfrac{15}{16}\)
= \(\dfrac{1}{16}+\dfrac{15}{16}=1\)