Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x + y + z= B; 2x + 3y + 4z = A
Có thể lấy 2A/3A/4A - B cũng được để triệt tiêu x/y/z.Lại có điều kiện x+y+z=1998=> x=1998-y-z (tương tự với x;y)Sau đó cậu lần lượt rút x;y;z theo một biến nào đó để giải phương trình.
KL: x=668;y=664;z=666
(*) \(x^3-y^3-z^3=3xyz\)\(\Leftrightarrow x^3-3xyz=\left(y+z\right)\left[\left(y+z\right)^2-3yz\right]\)
Thay \(y+z=\frac{1}{2}x^2\)(*) \(\Leftrightarrow x^3-3xyz=\frac{x^2}{2}\left(\frac{x^4}{4}-3yz\right)\)\(\Leftrightarrow\frac{x^6}{8}-x^3-\frac{3}{2}x^2yz+3xyz=0\)
\(\Leftrightarrow x^6-8x^3-12x^2yz+24xyz=0\)
\(\Leftrightarrow x^3\left(x^3-8\right)-12x\left(x-2\right)yz=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^4-12yz+2x^3+4x^2\right)=0\)
Với mọi \(y>0;z>0\)thì \(\left(y+z\right)^2\ge4yz\)thay \(x^2=2\left(y+z\right)\)\(\Rightarrow x^4\ge16yz\ge12yz\Rightarrow x^4-12yz\ge0\)
Với mọi x>0 thì \(x^4-12yz+2x^3+4x^2>0\)
Nên (*) \(\Leftrightarrow x\left(x-2\right)=0\)vì \(x>0\)nên \(x=2\)
Thay vào \(x^2=2\left(y+z\right)\)ta được \(y+z=2\)vì y;z nguyên dương nên \(y=1;z=1\)
Thay \(x=2;y=1;z=1\)ta thấy TMĐK đề bài nên nó là nghiệm duy nhất của bài toán.
ta có x+y+z=1998 (1) => x=1998-y-z (3)
2x+3y+4z=5992 (2) <=> 2(1998-y-z)+3y+4z=5992
=>y=1996-2z
thay vào (3) ta có
x=2+z
ta có
x>y>z <=> z+2>y>z
mà x,y,z là số nguyên dương
=>y=z+1
thay trở lại (1), ta có: 3z=1995<=>z=655 =>y=656,x=657(thõa mãn x>y>z>663)
Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)
Tương tự:\(-1\le y\le1;-1\le z\le1\)
Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)
\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị
\(\Rightarrow S=2020\)
x>y>z>663 nhé