K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta có :

vì \(|x-1|=|1-x|\) và \(|a|+|b|\ge|a+b|;|a|\ge0\)

 Xét vế phải :

\(VP=\left(|1-x|+|x-4|+|x-2|+|y-3|\ge|x-4+1-x|\right)+0+0=3\)

Dấu "=" xảy ra khi :

\(x-2=0\Rightarrow x=2\)(Thỏa mãn ) 

\(y-3=0\Rightarrow y=3\)(Thỏa mãn )

Vậy x = 2 ; y = 3

24 tháng 12 2018

Sai đề

24 tháng 12 2018

haha~!nực cười!

Sai đề tôi lm gì cx dc nha!

đề này là của Alibaba Nguyễn đưa  cho tui đó!(chẳng lẽ hok đại hok mak vt sai đề!)

CTV thì giải đi chứ!KO SAI ĐỀ ĐÂU MAK ĐỂ Ý!

26 tháng 3 2019

Do \(x+y+z=0;-1\le x,y,z\le1\)

Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu

Giả sử : \(x\ge0;y\ge0;z\le0\)

Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)

\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)

\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)

Vậy : \(x^2+y^4+z^6\le2\)

20 tháng 7 2021

Thực hiện quy đồng ta có :

9xy−1y=2+3x⇔9−x=2xy+3y9xy−1y=2+3x⇔9−x=2xy+3y

⇔4xy+2x+6y+3=21⇔4xy+2x+6y+3=21

Do x,y nguyên dương nên ta có:

⇔(2x+1)(2x+3)=21⇔\hept{2x+1=32y+3=7⇔\hept{x=1y=2

K mk vs đk ạ

20 tháng 7 2021

\(\frac{9}{xy}-\frac{1}{y}=2+\frac{3}{x}\Rightarrow9-x=2xy+3y\Rightarrow y=\frac{9-x}{2x+3}\)

\(\Rightarrow2y=\frac{18-2x}{2x+3}=\frac{21}{2x+3}-1\inℕ^∗\Leftrightarrow\frac{21}{2x+3}\inℕ^∗,\frac{21}{2x+3}>1\)

\(\Rightarrow2x+3=1;3;7\Rightarrow x=-1;0;2\)----> Nhận \(x=2\Rightarrow y=\frac{9-x}{2x+3}=1\)

Vậy phương trình có nghiệm nguyên dương: (2;1).

5 tháng 2 2019

\(2^x+1=y\)

\(\Leftrightarrow2^x=y-1\)

\(\Leftrightarrow y=2^x+1\)

5 tháng 2 2019

Bn làm như thế tớ chẳng hiểu gì cả

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

5 tháng 11 2019

Bài 1: gọi 3 số cần tìm là a;b;c

Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5

Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5

=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)

Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1

=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}

Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại

Vậy 3 số cần tìm là 2;5;7

Thử: 2.5.7=70; 5(2+5+7)=70

6 tháng 12 2015

sorry, em mới học lớp 6 thui

6 tháng 12 2015

1.\(x\left(x+y\right)=-45;y\left(x+y\right)=5\Rightarrow\left(x+y\right)\left(x+y\right)=-45+5=-40\Rightarrow\left(x+y\right)^2=-40\Rightarrow\left(x+y\right)\varepsilon\phi\Rightarrow x,y\varepsilon\phi\)