Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: a,b>0 , a khác b
\(A=\left[\frac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}}\right]:\left(\frac{a^2-b^2}{ab}\right)\)
\(=\frac{a-b}{b}:\frac{\left(a-b\right)\left(a+b\right)}{ab}=\frac{a-b}{b}.\frac{ab}{\left(a-b\right)\left(a+b\right)}=\frac{a}{a+b}\)
Với b=1, A=2 ta có:
\(\frac{a}{a+1}=2\Leftrightarrow a=2a+2\Leftrightarrow a=-2\) loại
vậy không tồn tại a để A=2 b=1
\(A=\left[\left(\sqrt{\frac{a}{b}}-1\right).\left(\sqrt{\frac{a}{b}}+1\right)\right]:\left(\frac{a}{b}-\frac{b}{a}\right)\)
\(A=\left[\left(\sqrt{\frac{a}{b}}\right)^2-1\right]:\left(\frac{a^2}{ab}-\frac{b^2}{ab}\right)\)
\(A=\left(\frac{a}{b}-1\right):\left[\frac{\left(a-b\right)\left(a+b\right)}{ab}\right]\)
\(A=\left(\frac{a-b}{b}\right).\left[\frac{ab}{\left(a-b\right)\left(a+b\right)}\right]\)
\(A=\frac{a}{a+b}\)
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)
\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4}{x-1}\)
b) \(\frac{4}{x-1}=7\)
\(\Leftrightarrow4=7.\left(x-1\right)\)
\(\Leftrightarrow\frac{4}{7}=x-1\)
\(\Leftrightarrow\frac{4}{7}+1=x\)
\(\Leftrightarrow\frac{11}{7}=x\)
\(\Rightarrow x=\frac{11}{7}\)
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^1}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}+\frac{a}{\sqrt{a^2-b^2}}\right).\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b.\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(=\frac{a-b}{\sqrt{a^2-b^2}}\)
\(=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)
\(=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
\(=\frac{\sqrt{a^2-b^2}}{a+b}\)
a) Rút gọn :M= \(a-2\sqrt{a}\)
b) \(M\le0\Leftrightarrow a-2\sqrt{a}\le0\)
\(\Leftrightarrow a\le2\sqrt{a}\Leftrightarrow\left(\sqrt{a}\right)^2\le2\sqrt{a}\)
\(\Leftrightarrow\sqrt{a}\times\sqrt{a}\le2\sqrt{a}\)
\(\Rightarrow\sqrt{a}\le2\left(a>0\right)\Leftrightarrow a\le4\)
Vì a # 4 và a > 0 nên 0 < a < 4
Vậy 0 < a < 4 thì M\(\le\)1
\(\frac{a\left(a-1\right)}{a-1}-\frac{a\left(-6a+5\right)}{a-1}=\frac{a^2-a+6a^2-5a}{a-1}\)
=\(\frac{7a^2-6a}{a-1}\)
quy đòng, xong phá ngoặc là xong, nhớ tìm ĐKXĐ nữa