K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

Bài giải : 

 


b) 
Từ I kẻ IKAC;IEBC;IOAB 

OI // AC (cùng vuông góc với AB)  OIAˆ=IAKˆ (cặp góc so le trong) 

AI là tia phân giác của góc BAC nên OAIˆ=KAIˆ=BACˆ2=90o2=45o 

 Tam giác AOI vuông cân tại O  OA = OI (1)

ΔOIAKAI (cạnh huyền - góc nhọn) 
 OI = AK (2) 
Từ (1) và (2)  AO = AK 

Chứng minh : 
• ΔOIBEIB (cạnh huyền - góc nhọn)

 OB = EB (2 cạnh tương ứng)

• ΔEICKIC (cạnh huyền - góc nhọn) 

 EC = KC (2 cạnh tương ứng)


Ta có : 2AO = AO + AK = (AB - OB) + (AC - KC) 
 2AO=ABBE+ACEC=AB+AC−(BE+EC)=AB+ACBC=8+15−17=6
 AO=6;2=3(cm)

Mà tam giác AOI vuông cân tại O nên IO = AO = 3 cm 

19 tháng 7 2015

a, CM ΔIHBIKC (c.g.c).⇒IBHˆ=ICKˆ ⇒BH=CK

IBHˆ=ICKˆ

Vì tam giác ABE là tam giác đều nên giao điểm của 3 đường trung trực cũng là giao điểm của 3 đường phân giác. Vậy, AHBˆ=300

ICKˆ=300+Bˆ

Ta có: KCFˆ=3600−300−(1800−Aˆ−Cˆ)−600−(1800−Aˆ−Bˆ)

KCFˆ=3600−300−1800+Aˆ+Cˆ−600−1800+Aˆ+Bˆ

KCFˆ=900+Aˆ

Vì H là trực tâm nên AH=BHAH=CK

Xét hai tam giác AHF và CKF, ta có:

AH=CK (=HB)

AF=CF (gt)

HAFˆ=KCFˆ (cmt)

⇒ΔAHFAKF (c.g.c)

b, Ta có:

HF=KF (ΔAHFAKF)

AHFˆ+HFCˆ=600⇒HCFˆ+CFKˆ=600 (AHFˆ=CFKˆ)

Vậy, tam giác HKF là tam giác đều.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
16 tháng 4 2018

Câu 1 :

 Ta có: Có DH _l_ EF (gt)

=> H là hình chiếu của D

mà DE < DF (gt)

=> HE < HF (quan hệ đường xiên hình chiếu)

2. Vì HE < HF (từ 1)

=> ME < MF (quan hệ đx, hình chiếu)

3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:

DH: chung

H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)

nhưng HE < HF (từ 1)

=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)

27 tháng 1 2016

a1, Xét tam giác AMB và tam giác AMC có :

AM chung
B=C(tam giác ABC cân )

AB=AC9tam giác ABC cân)

Do đó tam giác AMB=tam giác AMC(c.g.c)

a2, Vì tam giác AMB=tam giác AMC( cmt)

=>Bam=Cam ( 2 góc tương ứng)

=>AM là tia p/g góc A

Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng

27 tháng 1 2016

vẽ hình giúp

 

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

2 tháng 3 2020

a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)

\(\implies\) 60 + BAH + 90 =180

\(\implies\) BAH = 30

b) Xét tam giác AHI và tam giác ADI có :

  AH = AD (gt)

  AI chung 

  HI=DI (gt)

\(\implies\) tam giác AHI = tam giác ADI (c-c-c)

\(\implies\) AIH = AID (hai góc tương ứng)

Mà AIH + AID = 180 (hai góc kề bù ) (2)

\(\implies\) AIH + AIH =180

\(\implies\) 2.AIH = 180

\(\implies\) AIH = 90(1)

Từ (1);(2) \(\implies\) AIH = AID = 90

\(\implies\) AI vuông góc với HD 

c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)

Hay  HAK = DAK 

Xét tam giác AHK và tam giác ADK có :

 AH = AD (gt)

 AK chung

HAK = DAK (cmt)

\(\implies\) tam giác  AHK = tam giác ADK (c-g-c)

+)Ta có:BAH + HAC = BAC

\(\implies\) BAH + HAC = 90

\(\implies\) 30 +HAC =90

\(\implies\) HAC = 60 

Hay HAD =60

\(\implies\) HAK + DAK =60

Mà : HAK = DAK (cmt)

\(\implies\) HAK + HAK =60

\(\implies\) 2 HAK = 60

\(\implies\) HAK = 30

Xét tam giác vuông BHA và tam giác giác vuông KHA có:

 HA chung

 BAH = KAH =30 (cmt)

\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)

\(\implies\) BH = KH (hai cạnh tương ứng)

\(\implies\) H là trung điểm của BK

29 tháng 2 2020

Bài 1 trc

Hình bác tự vẽ đc nhỉ

a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có

AB : cạnh chung

\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)

AD = AC  (gt)

=> \(\Delta\) ABD = \(\Delta\) ABC  (c-g-c )

b) Theo câu a ta có  \(\Delta\) ABD = \(\Delta\) ABC 

=> BD = BC ( 2 góc tương ứng )

+) Xét \(\Delta\) BDC có

\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)

=> \(\Delta\) BDC đều

c) +) Xét \(\Delta\) ABC vuông tại A

\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\)   ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)

=> \(AC=\frac{1}{2}BC\)    ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)   ( cm)

+) Xét \(\Delta\)ABC vuông tại A

\(\Rightarrow BC^2=AC^2+AB^2\)  ( định lí Py-ta-go)

\(\Rightarrow AB^2=BC^2-AC^2\)

Bạn tự làm nốt nhá

Cau kia đang bận k giúp đc r