Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
a, \(\Delta=\left(m-2\right)^2-4\left(-6\right)=\left(m-2\right)^2+24>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-6\end{cases}}\)
Ta có : x1 là nghiệm PT(1) thay vào ta được ( mình sửa luôn đề nhé)
\(\left(m-2\right)x_1+6-x_1x_2+\left(m-2\right)x_2=16\)
\(\Leftrightarrow\left(m-2\right)\left(x_1+x_2\right)-x_1x_2=10\)
Thay vào ta được \(\left(m-2\right)^2-\left(-6\right)=10\Leftrightarrow\left(m-2\right)^2=4\)
TH1 : \(m-2=2\Leftrightarrow m=4\)
TH2 : \(m-2=-2\Leftrightarrow m=0\)
b, 2 nghiệm cùng dấu âm
\(\hept{\begin{cases}\Delta\ge0\\S< 0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)^2+24\ne0\left(luondung\right)\\m-2< 0\\-6>0\left(voli\right)\end{cases}}}\)
Vậy ko giá trị m tm 2 nghiệm cùng âm
a) Thay m = 3 vào đẳng thức đó ta có:
x2 - 6x + 4 = 0
\(\Leftrightarrow\) (x - 3)2 - 5 = 0
\(\Leftrightarrow\) (x - 3)2 = 5
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-3=\sqrt{5}\\x-3=-\sqrt{5}\end{cases}}\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{cases}}\)
a, tính biệt thức delta rồi ép ra hđt thì nó luôn >0
b,theo vi-ét: ..... (tự tính nha bạn )
ta có : x12+x22= 2x1x2 +65
=> (x1+x2)2 - 2x1x2 = 2x1x2 +65
thay tổng và tích từ vi-ét chứa ẩn m vào rồi tính ra m
nhạt =.=
\(x^2-2\left(m+2\right)x+\left(m+2\right)^2-1=0.\)
\(x^2-2\left(m+2\right)x+\left\{\left(m+2\right)^2-1\right\}=0\)
\(\hept{\begin{cases}a=1\\b=-2\left(m+2\right)\\c=\left\{\left(m+2\right)^2-1\right\}\end{cases}}\)
\(\Delta'=\left(m+2\right)^2-\left\{\left(m+2\right)^2-1\right\}=1\)
\(\Delta'>0\)
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-m-2+1=-1.\)
\(x_2=-m-2-1=-3\)
có \(\Delta'=\left(m+2\right)^2-\left(m+2\right)^2+1=1\) để ý phần này
m = bao nhiêu thì denta vẫn =1
vậy vs mọi giá trị của M thì denta vẫn = 1 , và pt có 2 nghiêm x1,x2
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
a, \(x^2-mx+m-1=0\)
Thay m = 4 ta đc :
\(x^2-4x+4-1=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn