Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)
b) Phương trình hoành độ giao điểm giữa (P) và (d) là:
\(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)
c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)
Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
a, \(\Delta=\left(m-2\right)^2-4\left(-6\right)=\left(m-2\right)^2+24>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-6\end{cases}}\)
Ta có : x1 là nghiệm PT(1) thay vào ta được ( mình sửa luôn đề nhé)
\(\left(m-2\right)x_1+6-x_1x_2+\left(m-2\right)x_2=16\)
\(\Leftrightarrow\left(m-2\right)\left(x_1+x_2\right)-x_1x_2=10\)
Thay vào ta được \(\left(m-2\right)^2-\left(-6\right)=10\Leftrightarrow\left(m-2\right)^2=4\)
TH1 : \(m-2=2\Leftrightarrow m=4\)
TH2 : \(m-2=-2\Leftrightarrow m=0\)
b, 2 nghiệm cùng dấu âm
\(\hept{\begin{cases}\Delta\ge0\\S< 0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)^2+24\ne0\left(luondung\right)\\m-2< 0\\-6>0\left(voli\right)\end{cases}}}\)
Vậy ko giá trị m tm 2 nghiệm cùng âm
a) Thay m = 3 vào đẳng thức đó ta có:
x2 - 6x + 4 = 0
\(\Leftrightarrow\) (x - 3)2 - 5 = 0
\(\Leftrightarrow\) (x - 3)2 = 5
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-3=\sqrt{5}\\x-3=-\sqrt{5}\end{cases}}\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{cases}}\)
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn
Thôi anh ơi em chịu lp 12
lp em.2=lp anh
shitbo tui là con gái. Z e hok lớp 6??
Tính chụy đây còn trẻ con lém