Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tana.cota=1\Rightarrow tana=\dfrac{1}{cota}=\dfrac{1}{\dfrac{40}{9}}=\dfrac{9}{40}\)
\(1+tan^2a=\dfrac{1}{cos^2a}=1+\left(\dfrac{9}{40}\right)^2=\dfrac{1681}{1600}\\ \Rightarrow cos^2a=\dfrac{1600}{1681}\\ \Rightarrow cosa=\dfrac{40}{41}\)
\(1+cot^2a=\dfrac{1}{sin^2a}=1+\left(\dfrac{40}{9}\right)^2=\dfrac{1681}{81}\\ \Rightarrow sin^2a=\dfrac{81}{1681}\\ \Rightarrow sina=\dfrac{9}{41}\)
a) Ta có: \(AB^2+AC^2=21^2+28^2=1225=35^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Xét tam giác ABC vuông tại A có:
\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}\)
\(sinC=\dfrac{AB}{BC}=\dfrac{21}{35}=\dfrac{3}{5}\)
c) Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{35}=\dfrac{63}{5}\left(m\right)\)
\(CH=BC-BH=35-\dfrac{63}{5}=\dfrac{112}{5}\left(m\right)\)
d) Xét tam giác ABC vuông tại A có:
AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.35=17,5\left(m\right)\)
Áp dụng HTL:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{\dfrac{63}{5}.\dfrac{112}{5}}=\dfrac{84}{5}\left(m\right)\)
Ta có: \(HM=BM-BH=\dfrac{1}{2}BC-BH\)(do AM là trung tuyến ứng với cạnh huyền)
\(\Rightarrow HM=\dfrac{1}{2}.35-\dfrac{63}{5}=\dfrac{49}{10}\left(m\right)\)
\(S_{AHM}=\dfrac{1}{2}.AH.HM=\dfrac{1}{2}.\dfrac{84}{5}.\dfrac{49}{10}=\dfrac{1029}{25}\left(m^2\right)\)