K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

cách 1: 
ta sẽ chứng minh : 
*tích của 2 số chẵn liên tiếp thì chia hết cho 8 : gọi số chẵn thứ nhất là 2n ( n là số nguyên dương) thì số chẵn liền theo là 2n + 2 , tích của chúng là 2n.(2n + 2) = 2n.2(n +1) = 4.n(n + 1), Trong tích n(n+1) có 1 số chia hết cho 2 vậy tích của 2 số chẵn liên tiếp thì chia hết cho 4.2 = 8 (1) 
*trong tích n(n+1)(n+2)(n+3)(n+4) nếu n chia hết 5 thì tích chia hết 5, nếu n chia 5 dư 1 thì (n + 4) chia hết 5, nếu n chia 5 dư 2 thì (n + 3) chia hết 5 ,nếu n chia 5 dư 3 thì (n + 2) chia hết 5, nếu n chia 5 dư 4 thì (n + 1) chia hết 5 => tích n(n+1)(n+2)(n+3)(n+4) chia hết 5 (2) 
* trong tích n(n+1)(n+2) nếu n chia hết 3 thì tích chia hết 3, nếu n chia 3 dư 1 thì (n + 2) chia hết 3, nếu n chia 3 dư 2 thì (n + 1) chia hết 3 => n(n+1)(n+2) chia hết 3 => n(n+1)(n+2)(n+3)(n+4) chia hết cho 3 (3) 
*ƯCLN(8;5;3) = 1 (4) 
Từ (1), (2), (3) và (4) => n(n+1)(n+2)(n+3)(n+4) chia hết cho 8.5.3 = 120 

cách 2: quy nạp toán học P(n) = n(n+1)(n+2)(n+3)(n+4) 
với n = 1 ta có n(n+1)(n+2)(n+3)(n+4) = 1.2.3.4.5 =120 chia hết cho 120 dúng 
giả sử đúng với n = k nghĩa là k(k+1)(k+2)(k+3)(k+4) chia hết cho 120 
ta sẽ chứng minh đúng với n = k + 1 thật vậy với n = k + 1 ta có 
P(k+1) = (k+1)(k+2)(k+3)(k+4)(k+5) = k(k+1)(k+2)(k+3)(k+4) + (k+1)(k+2)(k+3)(k+4)5 
k(k+1)(k+2)(k+3)(k+4) chia hết cho 5 vì với n = k đúng 
tích (k+1)(k+2)(k+3)(k+4) chứa 2 số chẵn liên tiếp nên chia hết 8 và trong tích có 3 số tự nhiên liên tiếp nên chia hết 3, tích có thừa số 5 vậy tích chia hết 8.3.5=120 
=> P(k+1) = (k+1)(k+2)(k+3)(k+4)(k+5) chia hết cho 120 (đpcm)

28 tháng 11 2018

5 số liên tiếp có 

1 số chia hết cho 5 
1 số chia hết cho 4 
3 số còn lại 
(có 1 số chia hết cho 2& 1 số chia hết cho 3 hoặc có 1 số chia hết cho 6) 
4.5.6=120=> cần cm

Huhu, cứu minz vs, bài nhiều quá!1. Tìm STN x biết:a) 6 chia hết (x-1)b) 5 chia hết (x+1)c) 12 chia hết (x+3)d) 14 chia hết (2x)e) 15 chia hết (2x+1)g) x+16 chia hết x+1h) x+11 chia hết x+135 chia hết cho x+310 chia hết cho (2x +1)x+7 chia hết cho 25 và x < 100x+13 chia hết cho x+12x +108 chia hết cho 2x +32, a) Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)b) Chứng tỏ rằng ab + ba chia hết cho 11c) Chứng minh aaa luôn chia hết cho...
Đọc tiếp

Huhu, cứu minz vs, bài nhiều quá!

1. Tìm STN x biết:

a) 6 chia hết (x-1)

b) 5 chia hết (x+1)

c) 12 chia hết (x+3)

d) 14 chia hết (2x)

e) 15 chia hết (2x+1)

g) x+16 chia hết x+1

h) x+11 chia hết x+1

35 chia hết cho x+3

10 chia hết cho (2x +1)

x+7 chia hết cho 25 và x < 100

x+13 chia hết cho x+1

2x +108 chia hết cho 2x +3

2, 

a) Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)

b) Chứng tỏ rằng ab + ba chia hết cho 11

c) Chứng minh aaa luôn chia hết cho 37

d) Chứng minh aaabbb luôn chia hết cho 37

e) Chứng minh ab-ba chia hết cho 9 với a>b

3, 

a) Từ 1 đến 1000 có bao nhiêu số chia hết cho 5

b) Tổng 10¹⁵+8 có chia hết cho 9 và 2 không?

c) Tổng 10²⁰¹⁰+8 có chia hết cho 9 không?

d) Tổng 1²⁰¹⁰+14 có chia hết cho 3 và 2 không?

e) Hiệu 10²⁰¹⁰-4 có chia hết cho 3 không?

4, 

a) Tổng của 3 stn liên tiếp có chia hết cho 3 không?

b) Tổng của 4 stn liên tiếp cho chia hết cho 4 không?

c) Chứng tỏ rằng trong 3 stn liên tiếp có 1 số chia hết cho 3.

d) Chứng tỏ rằng trong 4 stn liên tiếp có một số chia hết cho 4.

Minz bt là bài dài nè, các bn lm lâu nè, nhưng các bn cố gắng giúp mk hết luôn nha, mk xin trả mỗi bn lm 3  t i c k. 7h30 sáng mai minz phải đi học rùi, các bn iu giúp minz nhaaaaa

3
26 tháng 8 2020

tìm số chia hết cho các số đó lập bảng ra

lần sau đăng ít thôi~

26 tháng 8 2020

~~~Ủa bn j đó ơi, mk đăng nhiều đâu liên quan gì đến bạn đâu nhỉ, bạn giúp mình thì mình xin cảm ơn nhưng mong bn lần sau đừng nói vậy~~~

17 tháng 2 2021

cặc

Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :

A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n 

Muốn A  là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:

Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại

Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn

Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn

Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại

Vậy n=12 và n=15 

Em làm chưa chắc đúng nha, chị thông cảm.
 

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

29 tháng 11 2018

x chia hết cho 64,x chia hết cho 48 =>x thuộc BC(64,48)        (x thuộc N*,200<x<500)

mk bân rồi tự làm tiếp nha

29 tháng 11 2018

theo đề ta có : x chia hết cho 48 và 64 ; 200<x<500

suy ra : x thuộc BC (48;64)

trước hết ta tìm : BCNN(48;64)

48=2 mũ 4 nhân 3

64=2 mũ 6

BCNN(48;64)=2 mũ 6 nhân 3=192

BC(48;64)=B(192)={0;192;384;576;...}

mà 200<x<500 nên x=384

(bạn đổi ra kí hiệu mấy chỗ :chia hết cho,suy ra,thuộc,mũ,nhân .giúp mk nhé do máy tính mk bấm ko đc)

chúc bạn học giỏi ! kiểm tra thật tốt nhé!

29 tháng 9 2018

24:7=3 dư 3

15 tháng 11 2019

Để \(5n+19⋮n+3\)

\(\Rightarrow5n+15+4⋮n+3\)

\(\Rightarrow5\left(n+3\right)+4⋮n+3\)

Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)

Mà n là só tự nhiên => n = 1

Vậy n = 1 

15 tháng 11 2019

Ta có : 1 + 2 + 3 + 4 + ... + x = 3750

<=> x(x + 1)/2 = 3750

=>   x(x + 1) = 7500

Vì 7500 không là tích của 2 số tự nhiên liên tiếp : 

=> \(n\in\varnothing\)

31 tháng 10 2019

ba,*15 có số cuối là 5

=>*15 luôn chia hết cho 5(1)

*15 có chữ số cuối là 5

=>*15 không chia hết cho 2(2)

Từ (1) (2)

=> Không có * thích hợp

a,  ko có số nào thỏa mãn vì tận cùng là 5

b, để  * 37 chia hết cho 3 

thì ( * + 3 + 7 ) chia hết cho 3

hay ( * + 10 ) chia hết cho 3

\(\Rightarrow\)* = { 2 ; 5; 8 }

vậy ta có các số 237; 537 ; 837 chia hết ch 3

c,  để 5*94 chia hết cho 3 và 9 

thì (  5 + * + 9 + 4 ) chia hết cho 3 ,9

hay ( 18 + * ) chia hết cho 3 ,9

\(\Rightarrow\) * = { 0 ; 9 }

vậy ta có các số 5094; 5994 chia hết cho 3 ,9

d, để *3747* chia hết cho 2,5thì tận cùng bằng 0

    để *37470 chia hết cho 3, 9 

thì ( * + 3 +7 + 4 + 7 + 0 )chia hết cho 3 ,9

hay ( * + 21 ) chia hết cho 3, 9

\(\Rightarrow\)  * = { 6 }

vậy ta có số 637470 chia hết cho cả 2 ,3 ,5 ,9

e, để 1*5 chia hết cho 2  ko có trường hợp nào thỏa mãn

    để 1* 5 chia hết cho 5 thì  * = { 0; 1 ;.....; 9 }

vậy * = { 0;1;..;9}