K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2021

Trả lời:

a) ta có: 2 = √4

Vì 4 > 3 nên √4 > √3

Vậy 2 > √3

b) Ta có: 6 = √36

Vì 36 < 41 nên √36 < √41

Vậy 6 < √41

c)  ta có 7 = √49

Vì 49 > 47 nên √49 > √47

Vậy 7 > √47

18 tháng 4 2021

>;<;>

23 tháng 4 2021

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

28 tháng 5 2021

a) Ta có: 33=32.3=9.3=2733=32.3=9.3=27

Vì 27>1227>12 nên 33>1233>12

Vậy 33>1233>12.
b) Ta có: 35=32.5=4535=32.5=45

7=72=497=72=49

Vì 49>4549>45 nên 7>357>35

Vậy 7>357>35.

c) Ta có: 1351=(13)2.51=5191351=(13)2.51=519

15150=(15)2.150=15025=6=6.99=54915150=(15)2.150=15025=6=6.99=549

Vì 549>519549>519 nên 1351<151501351<15150

Vậy 1351<151501351<15150.

d) Ta có: 126=(12)2.6=64126=(12)2.6=64

=32=3.12=3.12=32=3.12=3.12

Vì 3.12<6123.12<612 nên 12.6<61212.6<612

Vậy 126<612126<612.

25 tháng 4 2021

a) Ta có: 5=353=31255=533=1253

Vì 125>1233125>3123125>123⇔1253>1233   

                        5>3123⇔5>1233

Vậy 5>31235>1233

25 tháng 4 2021

b, Ta có :

+)536=353.6=3125.6=3750+)635=363.5=3216.5=31080+)563=53.63=125.63=7503+)653=63.53=216.53=10803

Vì 750<10803750<31080750<1080⇔7503<10803

                          536<635⇔563<653.

Vậy 536<635563<653.

16 tháng 4 2021

a)  Ta có:

4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23

Cách khác:

Ta có:  

⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12

Vì 16>12⇔√16>√1216>12⇔16>12

Hay 4>2√34>23.

b) Vì 5>4⇔√5>√45>4⇔5>4

⇔√5>2⇔5>2   

⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)

Vậy −√5<−2−5<−2.


 

17 tháng 4 2021

a, Ta có : \(4=\sqrt{16}\)\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

Do 12 < 16 hay \(2\sqrt{3}< 4\)

b, Ta có : \(-2=-\sqrt{4}\)

Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)

Vậy \(-2>-\sqrt{5}\)

16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

28 tháng 5 2021

a) 2 \sqrt{6}, \sqrt{29}, 4 \sqrt{2}, 3 \sqrt{5} ;26,29,42,35;

b) \sqrt{38}, 2 \sqrt{14}, 3 \sqrt{7}, 6 \sqrt{2}38,214,37,62

19 tháng 6 2021

a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)

25 tháng 4 2021

Rút gọn ta được:

M=√a−1/√a

Viết M ở dạng M=1−1/√a

suy ra M<1

29 tháng 4 2021

Với \(x>0;x\ne1\)

\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1 

13 tháng 4 2021

a

căn có nghĩa 

\(\Leftrightarrow\frac{a}{3}\ge0\)   

\(\Leftrightarrow a\ge0\)   

b

căn có nghĩa 

\(\Leftrightarrow-5a\ge0\)   

\(\Leftrightarrow b\le0\left(-5\le0\right)\)   

c

căn có nghĩa 

\(\Leftrightarrow4-a\ge0\)   

\(\Leftrightarrow-a\ge0-4\)   

\(\Leftrightarrow-a\ge-4\)   

\(\Leftrightarrow a\le4\)   

d

căn có nghĩa

\(\Leftrightarrow3a+7\ge0\)   

\(\Leftrightarrow a\ge-\frac{7}{3}\)

20 tháng 5 2021

a>0

24 tháng 4 2021

+ Ta có:

2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)

                   =2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5

                   =2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).

+ Ta có:

3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)

                    =3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7

                    =3(√10−√7)3=√10−√7=3(10−7)3=10−7.

+ Ta có:

1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)

=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y

+ Ta có:

2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)

=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.

24 tháng 4 2021

\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)

\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236426326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x(6x+136x+6x):6x và làm tiếp