K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

+ Ta có:

2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)

                   =2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5

                   =2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).

+ Ta có:

3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)

                    =3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7

                    =3(√10−√7)3=√10−√7=3(10−7)3=10−7.

+ Ta có:

1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)

=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y

+ Ta có:

2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)

=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.

24 tháng 4 2021

\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)

\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

24 tháng 4 2021

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)

\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)

\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)

\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)

24 tháng 4 2021

+ Ta có: 

510=5.1010.10=510(10)2=51010510=5.1010.10=510(10)2=51010

=5.105.2=5.105.2=102=102.

+ Ta có:

525=5.525.5=552.(5.5)=552(5)2525=5.525.5=552.(5.5)=552(5)2

=552.5=52=552.5=52.

+ Ta có:

1320=1.20320.20=203.(20.20)=203.(20)21320=1.20320.20=203.(20.20)=203.(20)2

              =203.20=22.560=2560=252.30=530=203.20=22.560=2560=252.30=530.

+ Ta có:

(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2

                    =2.2+225.2=2(2+2)5.2=2+25=2.2+225.2=2(2+2)5.2=2+25.

+ Ta có:

 y+byby=(y+by).yby.y=yy+by.yb.(y)2y+byby=(y+by).yby.y=yy+by.yb.(y)2

                    =yy+b(y)2by=yy+byby=yy+b(y)2by=yy+byby

                    =y(y+b)b.y=y+bb=y(y+b)b.y=y+bb.

Cách khác:

y+byby=(y)2+bybyy+byby=(y)2+byby=y(y+b)by=y+bb

Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com

#Ye Chi-Lien

24 tháng 4 2021

+ Ta có:

33+1=3(31)(3+1)(31)=333.1(3)21233+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12

=33331=3332=33−33−1=33−32.

+ Ta có:

231=2(3+1)(31)(3+1)=2(3+1)(3)21223−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12

=2(3+1)31=2(3+1)2=3+1=2(3+1)3−1=2(3+1)2=3+1.

+ Ta có:

2+323=(2+3).(2+3)(23)(2+3)=(2+3)222(3)22+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2

=22+2.2.3+(3)243=22+2.2.3+(3)24−3=4+43+31=(4+3)+431=4+43+31=(4+3)+431

=7+431=7+43=7+431=7+43.

+ Ta có:

b3+b=b(3b)(3+b)(3b)b3+b=b(3−b)(3+b)(3−b)

=b(3b)32(b)2=b(3b)9b;(b9)=b(3−b)32−(b)2=b(3−b)9−b;(b≠9).

+ Ta có:

p2p1=p(2p+1)(2p1)(2p+1)p2p−1=p(2p+1)(2p−1)(2p+1)

=p(2p+1)(2p)212=p(2p+1)4p1=p(2p+1)(2p)2−12=p(2p+1)4p−1=2pp+p4p1

Bài 51 trang 30 SGK Toán 9 tập 1 - loigiaihay.com

#Ye Chi-Lien

24 tháng 4 2021

\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)

\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)

\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)

\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)

\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)

#Học tốt!!!

17 tháng 5 2021

\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)

\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)

\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)

\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)

31 tháng 3 2017

\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)

\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

31 tháng 3 2017

ĐS:

28 tháng 5 2021

a) (a+1)(ba+1)(a+1)(ba+1).
b) (xy)(x+y)(x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

10 tháng 4 2017

Nhat Linh bị nhầm câu cuối:

\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)

24 tháng 4 2021

LG a

√18(√2−√3)2;18(2−3)2;

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

+ Sử dụng định lí so sánh hai căn bậc hai số học:  Với hai số a, ba, b không âm, ta có:

a<b⇔√a<√ba<b⇔a<b

Lời giải chi tiết:

Ta có:

√18(√2−√3)2=√18.√(√2−√3)218(2−3)2=18.(2−3)2

                               =√9.2.|√2−√3|=√32.2.|√2−√3|=9.2.|2−3|=32.2.|2−3|

                               =3√2.|√2−√3|=3√2(√3−√2)=32.|2−3|=32(3−2)

                               =3√2.3−3(√2)2=32.3−3(2)2

                               =3√6−3.2=3√6−6=36−3.2=36−6.

(Vì  2<3⇔√2<√3⇔√2−√3<02<3⇔2<3⇔2−3<0

Do đó: |√2−√3|=−(√2−√3)=−√2+√3|2−3|=−(2−3)=−2+3=√3−√2=3−2).

LG b

ab√1+1a2b2ab1+1a2b2

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

ab√1+1a2b2=ab√a2b2a2b2+1a2b2=ab√a2b2+1a2b2ab1+1a2b2=aba2b2a2b2+1a2b2=aba2b2+1a2b2

                         =ab√a2b2+1√a2b2=ab√a2b2+1√(ab)2=aba2b2+1a2b2=aba2b2+1(ab)2

                         =ab√a2b2+1|ab|=aba2b2+1|ab|

Nếu ab>0ab>0 thì |ab|=ab|ab|=ab

          ⇒ab√a2b2+1|ab|=ab√a2b2+1ab=√a2b2+1⇒aba2b2+1|ab|=aba2b2+1ab=a2b2+1.

Nếu ab<0ab<0 thì |ab|=−ab|ab|=−ab

           ⇒ab√a2b2+1|ab|=ab√a2b2+1−ab=−√a2b2+1⇒aba2b2+1|ab|=aba2b2+1−ab=−a2b2+1.

LG c

√ab3+ab4ab3+ab4

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

√ab3+ab4=√a.bb3.b+ab4=√abb4+ab4ab3+ab4=a.bb3.b+ab4=abb4+ab4

=√ab+ab4=√ab+a√(b2)2=√ab+a|b2|=√ab+ab2=ab+ab4=ab+a(b2)2=ab+a|b2|=ab+ab2.

(Vì b2>0b2>0 với mọi b≠0b≠0 nên |b2|=b2|b2|=b2).

LG d

a+√ab√a+√ba+aba+b

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có:

a+√ab√a+√b=(√a)2+√a.√b√a+√b=√a(√a+√b)√a+√ba+aba+b=(a)2+a.ba+b=a(a+b)a+b

=√a=a.

Cách khác:

a+√ab√a+√b=(a+√ab)(√a−√b)(√a+√b)(√a−√b)=a√a−a√b+√ab.√a−√ab.√b(√a)2−(√b)2=a√a−a√b+a√b−b√aa−b=a√a−b√aa−b=√a(a−b)a−b=√a

28 tháng 5 2021

a) 23.(32)=626.23.(3−2)=6−26.

b) ab|ab|1+a2 b2ab|ab|1+a2 b2. Rút gọn hơn, ta có kết quả

+) ab>0ab>0 thì ab1+1a2b2=1+a2 b2ab1+1a2b2=1+a2 b2.

+) ab<0ab<0 thì ab1+1a2b2=1+a2 b2ab1+1a2b2=−1+a2 b2.
c) 1b2ab+a1b2ab+a.
d) Cách 1.

a+aba+b=(a+ab)(ab)(a+b)(ab)a+aba+b=(a+ab)(a−b)(a+b)(a−b).

=aa+a2 babab2ab=a(ab)ab=a

31 tháng 3 2017

ĐS:

Bài 50:

\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)

\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)