Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Chứng minh các hằng đẳng thức:
\(x^4 + y^4 +(x+y)^4 = x^4 + y^4 + x^4 + 4x^3y + 6x^2y^2 +4xy^3 + y^4 \\\ = 2x^4 +2y^4 +4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(= 2(x^4 +y^4 +2x^2y^2)+4xy(x^2+y^2) + 2x^2y^2 \\\ = 2(x^2 + y^2)2 + 4xy(x^2 + y^2) +2x^2y^2\)
\(=2(x^2 +y^2) +2xy(x^2+ y^2) +x^2y^2) = 2(x^2 + y^2 + xy)^2 \\\ ⇒ đpcm\)
2/
Ta có : \([(5a - 3b) + 8c][(5a - 3b) - 8c] \)
\(= (5a - 3b)^2 - 64c^2\) (theo hiệu hai bình phương)
\(= 25a^2 - 30ab + 9b^2 - 64c^2\) (theo bình phương của hiệu)
\(= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2)\) (vì \(4c^2 = a^2 - b^2\))
\(= 9a^2 - 30ab + 25b^2 \)
\(= (3a - 5b)^2\) (theo bình phương của hiệu).
Chứng minh đẳng thức:
1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải
2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp
3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b3 =vp
4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp
5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp
6) (a+b)3 =(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp
7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b3 =a3-3a2b+3ab2-b3=vp
a, \(3a^2b^2-6a^2b^3+3a^2b^2\)
\(=6a^2b^2-6a^2b^3=6a^2b^2\left(1-b\right)\)
b, \(a^{n+1}-2a^{n-1}=a^2.a^{n-1}-2a^{n-1}=a^{n-1}\left(a^2-2\right)\)
c, \(3a^2b\left(a+b-2\right)-4ac^2-4bc^2+8c^2\)
\(=3a^2b\left(a+b-2\right)-4c^2\left(a+b-2\right)\)
\(=\left(3a^2b-4c^2\right)\left(a+b-2\right)\)
c, \(5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^{n+1}-2b^n\)
\(=5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^n.b-2b^n\)
\(=5a^n\left(a^2-ab+1\right)-2b^n\left(a^2-ab+1\right)\)
\(=\left(5a^n-2b^n\right)\left(a^2-ab+1\right)\)
Cho a-3b=1, 2ab=-4. Tính:
A=2a+(7ab)/2-6b+2
B= (2a+6b)2-2
C+ 3a2+27b2-ab-1
D=a3-27b3+a2+9b2+2
E=a4+81b4-1
Cho a-3b=1, 2ab=-4. Tính:
A=2a+(7ab)/2-6b+2
B=(2a+6b)2-2
C= 3a2+27b2-ab-1
D= a3-27b3+a2+9b2+2
E=a4+81b4-1
a, 15x5 - 10x4 + 5x3 + 10x2
b, -2a5x4 + 10a3x2 - 6a2x
c, 6x4 - 2x3 - 15x2 + 23x - 6
d, a5 - b5
a) \(=a\left(a+b\right)\left(-ab\right)\left(a-b\right)=-a^2b\left(a^2-b^2\right)\)
b) \(=\left(3a-1\right)^2+2\left(3a-1\right)\left(3a+1\right)+\left(3a+1\right)^2=\left(3a-1+3a+1\right)^2=\left(6a\right)^2=36a^2\)
c) \(=\left(a^2+b^2\right)^2-a^2b^2-\left(a^4+b^4\right)=a^4+b^4+2a^2b^2-a^2b^2-a^4-b^4=a^2b^2\)
nhớ LI KE