Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là phân tích thành nhân tử đúng ko? chứ đưa về hđt thì đây là dạng của một hằng đẳng thức rồi còn gì.Ta có hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\).Áp dụng vào:
\(\left(2x-1\right)^2-\left(4x+3\right)^2=\left(2x-1-4x-3\right)\left(2x-1+4x+3\right)\)
\(=\left(-2x-4\right)\left(6x+2\right)\)
\(=-4\left(x+2\right)\left(3x+1\right)\)
Cái này egiair rồi nhỉ đúng đáp số của a thế mà nói là sai
\(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
\(\left(x+y+4\right)\left(x+y-4\right)\)
\(=\left(x+y\right)^2-16\)
\(=x^2+y^2+2xy-16\)
a, =(x^2 +10x+25) +(y^2 +2y+1)
= (x+5)^2 +(y+1)^2
b, =(x+y)^2 -4^2
= x^2 + 2xy+ y^2 -16
\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)
\(=3\left(2x-y\right)+\left(2x-y\right)^2\)
\(=\left(3+2x-y\right)\left(2x-y\right)\)
\(B=9x^2-\left(y^2-4y+4\right)\)
\(=9x^2-\left(y-2\right)^2\)
\(=\left(3x+y-2\right)\left(3x-y+2\right)\)
A = ( 6x - 3y ) + (4x2 - 4xy + y2 )
A = 3.( 2x - y) + [ ( 2x )2 - 2.2.x.y + y2 ]
A = 3.( 2x - y ) + ( 2x - y )2
A = ( 2x - y ).(3 + 2x - y )
B = 9x2 - ( y2 - 4y + 4 )
B = ( 3x )2 - ( y - 2 )2
B = ( 3x - y + 2 ).( 3x + y - 2 )
C = - 25x2 + y2 - 6y + 9
C = ( y2 - 2.3.y + 32 ) - ( 5x )2
C = ( y - 3 )2 - ( 5x )2
C = (y - 3 - 5x ).( y - 3 +5x )
D = x2 - 4x - y2 -- 8y - 12
D = ( x2 - 4x + 4 ) - 4 - y2 - 8y -12
D = ( x - 2.2x + 22 ) - ( y2 + 2.4.y + 42 )
D = ( x - 2 )2 - ( y + 4 )2
D = ( x - 2 + y + 4 ).( x - 2 - y - 4 )
D = ( x + y + 2 ).( x - y - 6 )
a, \(\left(4x+5\right)^2=\left(4x+5\right)\left(4x+5\right)=\left[\left(4x+5\right)4x\right]+\left[\left(4x+5\right)5\right]=4x^2+20x+25\)
b, \(\left(5x-2\right)^2=\left(5x-2\right)\left(5x-2\right)=\left[\left(5x-2\right)5x-\left(5x-2\right)2\right]=5x^2-10x+25\)
b, \(8^2-12x^2=\left(8^2-12x^2\right)\left(8^2+12x^2\right)\)
đúng ko :)
@No name: Bị sai rồi nhé, a,b,c sai hết :>
a) ( 4x + 5 )2
= ( 4x )2 + 2.4x.5 + 52
= 16x2 + 40x + 25
b) ( 5x - 2 )2
= ( 5x )2 - 2.5x.2 + 22
= 25x2 - 20x + 4
c) 82 - 12x2
= 64 - 12x2
= ( V8 - V12x )( V8 + V12x )
a)\(-25+4x^2=\left(2x-5\right)\left(2x+5\right)\)
b)\(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
c)\(\frac{1}{9}x^2+\frac{2}{3}xy+y^2=\left(\frac{1}{3}x+y\right)^2\)
\(a,-25+4x^2=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(b,-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
\(c,\frac{1}{9}x^2+\frac{2}{3}xy+y^2=\left(\frac{1}{3}x\right)^2+\frac{2.1}{3}xy+y^2=\left(\frac{1}{3}x+y\right)^2\)(sửa đề)
Bài giải
\(a,\text{ }a^2+9-6a=a^2+2\cdot3a+3^2=\left(a-3\right)^2\)
\(b,\text{ }x^2-x+\frac{1}{4}=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
\(c,\text{ }-x^2+4x-x=3x-x^2=\left(\sqrt{3x}\right)^2-x^2=\left(\sqrt{3x}-x\right)\left(\sqrt{3x}+x\right)\)( Đề nói vận dụng hằng đẳng thức để rút gọn nên mình đưa về hiệu hai ình phương nha ! )
Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)
Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)
\(=0+\left(-1\right)^{2018}+1^{2018}\)
\(=2\)
Đề sai r bn nhé
\(4xy+4x^2y^2+1\)
\(=4x^2y^2+4xy+1\)
\(=\left(2xy\right)^2+2.2xy.1+1^2\)
\(=\left(2xy+1\right)^2\)